Cargando…
Optimizing parametrial aperture design utilizing HDR brachytherapy isodose distribution
Treatment of cervical cancer includes combination of external beam radiation therapy (EBRT) and brachytherapy (BRT). Traditionally, coronal images displaying dose distribution from a ring and tandem (R&T) implant aid in construction of parametrial boost fields. This research aimed to evaluate a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Termedia Publishing House
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635048/ https://www.ncbi.nlm.nih.gov/pubmed/23634156 http://dx.doi.org/10.5114/jcb.2013.34341 |
Sumario: | Treatment of cervical cancer includes combination of external beam radiation therapy (EBRT) and brachytherapy (BRT). Traditionally, coronal images displaying dose distribution from a ring and tandem (R&T) implant aid in construction of parametrial boost fields. This research aimed to evaluate a method of shaping parametrial fields utilizing contours created from the high-dose-rate (HDR) BRT dose distribution. Eleven patients receiving HDR-BRT via R&T were identified. The BRT and EBRT CT scans were sent to FocalSim (v4.62)(®) and fused based on bony anatomy. The contour of the HDR isodose line was transferred to the EBRT scan. The EBRT scan was sent to CMS-XIO (v4.62)(®) for planning. This process provides an automated, potentially more accurate method of matching the medial parametrial border to the HDR dose distribution. This allows for a 3D-view of dose from HDR-BRT for clinical decision-making, utilizes a paperless process and saves time over the traditional technique. |
---|