Cargando…

Acoustic rainbow trapping

Spatial modulation of sound velocity below the wavelength scale can introduce strong frequency-dependent acoustic responses in tailored composite materials, regardless the fact that most natural bulk materials have negligible acoustic dispersions. Here, for the first time, we experimentally demonstr...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Jie, Chen, Yongyao, Zhu, Xuefeng, Garcia-Vidal, Francisco J., Yin, Xiaobo, Zhang, Weili, Zhang, Xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635056/
http://dx.doi.org/10.1038/srep01728
Descripción
Sumario:Spatial modulation of sound velocity below the wavelength scale can introduce strong frequency-dependent acoustic responses in tailored composite materials, regardless the fact that most natural bulk materials have negligible acoustic dispersions. Here, for the first time, we experimentally demonstrate a metamaterial that traps broadband acoustic waves and spatially separates different frequency components, as the result of dispersion and wave velocity control by designed gradient subwavelength structures. The trapping positions can be predicted by the microscopic picture of balanced interplay between the acoustic resonance inside individual apertures and the mutual coupling among them. With the enhanced wave-structure interactions and the tailored frequency responses, such metamaterial allows precise spatial-spectral control of acoustic waves and opens new venue for high performance acoustic wave sensing, filtering, and nondestructive metrology.