Cargando…

Solving structure with sparse, randomly-oriented x-ray data

Single-particle imaging experiments of biomolecules at x-ray free-electron lasers (XFELs) require processing hundreds of thousands of images that contain very few x-rays. Each low-fluence image of the diffraction pattern is produced by a single, randomly oriented particle, such as a protein. We demo...

Descripción completa

Detalles Bibliográficos
Autores principales: Philipp, Hugh T., Ayyer, Kartik, Tate, Mark W., Elser, Veit, Gruner, Sol M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635695/
https://www.ncbi.nlm.nih.gov/pubmed/22714341
http://dx.doi.org/10.1364/OE.20.013129
Descripción
Sumario:Single-particle imaging experiments of biomolecules at x-ray free-electron lasers (XFELs) require processing hundreds of thousands of images that contain very few x-rays. Each low-fluence image of the diffraction pattern is produced by a single, randomly oriented particle, such as a protein. We demonstrate the feasibility of recovering structural information at these extremes using low-fluence images of a randomly oriented 2D x-ray mask. Successful reconstruction is obtained with images averaging only 2.5 photons per frame, where it seems doubtful there could be information about the state of rotation, let alone the image contrast. This is accomplished with an expectation maximization algorithm that processes the low-fluence data in aggregate, and without any prior knowledge of the object or its orientation. The versatility of the method promises, more generally, to redefine what measurement scenarios can provide useful signal.