Cargando…
Molecular basis for prey relocation in viperid snakes
BACKGROUND: Vertebrate predators use a broad arsenal of behaviors and weaponry for overcoming fractious and potentially dangerous prey. A unique array of predatory strategies occur among snakes, ranging from mechanical modes of constriction and jaw-holding in non-venomous snakes, to a chemical means...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635877/ https://www.ncbi.nlm.nih.gov/pubmed/23452837 http://dx.doi.org/10.1186/1741-7007-11-20 |
_version_ | 1782267227828912128 |
---|---|
author | Saviola, Anthony J Chiszar, David Busch, Chardelle Mackessy, Stephen P |
author_facet | Saviola, Anthony J Chiszar, David Busch, Chardelle Mackessy, Stephen P |
author_sort | Saviola, Anthony J |
collection | PubMed |
description | BACKGROUND: Vertebrate predators use a broad arsenal of behaviors and weaponry for overcoming fractious and potentially dangerous prey. A unique array of predatory strategies occur among snakes, ranging from mechanical modes of constriction and jaw-holding in non-venomous snakes, to a chemical means, venom, for quickly dispatching prey. However, even among venomous snakes, different prey handling strategies are utilized, varying from the strike-and-hold behaviors exhibited by highly toxic elapid snakes to the rapid strike-and-release envenomation seen in viperid snakes. For vipers, this mode of envenomation represents a minimal risk predatory strategy by permitting little contact with or retaliation from prey, but it adds the additional task of relocating envenomated prey which has wandered from the attack site. This task is further confounded by trails of other unstruck conspecific or heterospecific prey. Despite decades of behavioral study, researchers still do not know the molecular mechanism which allows for prey relocation. RESULTS: During behavioral discrimination trials (vomeronasal responsiveness) to euthanized mice injected with size-fractionated venom, Crotalus atrox responded significantly to only one protein peak. Assays for enzymes common in rattlesnake venoms, such as exonuclease, L-amino acid oxidase, metalloproteinase, thrombin-like and kallikrein-like serine proteases and phospholipase A(2), showed that vomeronasal responsiveness was not dependent on enzymatic activity. Using mass spectrometry and N-terminal sequencing, we identified the proteins responsible for envenomated prey discrimination as the non-enzymatic disintegrins crotatroxin 1 and 2. Our results demonstrate a novel and critical biological role for venom disintegrins far beyond their well-established role in disruption of cell-cell and cell-extracellular matrix interactions. CONCLUSIONS: These findings reveal the evolutionary significance of free disintegrins in venoms as the molecular mechanism in vipers allowing for effective relocation of envenomated prey. The presence of free disintegrins in turn has led to evolution of a major behavioral adaptation (strike-and-release), characteristic of only rattlesnakes and other vipers, which exploits and refines the efficiency of a pre-existing chemical means of predation and a highly sensitive olfaction system. This system of a predator chemically tagging prey represents a novel trend in the coevolution of predator-prey relationships. |
format | Online Article Text |
id | pubmed-3635877 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36358772013-04-26 Molecular basis for prey relocation in viperid snakes Saviola, Anthony J Chiszar, David Busch, Chardelle Mackessy, Stephen P BMC Biol Research Article BACKGROUND: Vertebrate predators use a broad arsenal of behaviors and weaponry for overcoming fractious and potentially dangerous prey. A unique array of predatory strategies occur among snakes, ranging from mechanical modes of constriction and jaw-holding in non-venomous snakes, to a chemical means, venom, for quickly dispatching prey. However, even among venomous snakes, different prey handling strategies are utilized, varying from the strike-and-hold behaviors exhibited by highly toxic elapid snakes to the rapid strike-and-release envenomation seen in viperid snakes. For vipers, this mode of envenomation represents a minimal risk predatory strategy by permitting little contact with or retaliation from prey, but it adds the additional task of relocating envenomated prey which has wandered from the attack site. This task is further confounded by trails of other unstruck conspecific or heterospecific prey. Despite decades of behavioral study, researchers still do not know the molecular mechanism which allows for prey relocation. RESULTS: During behavioral discrimination trials (vomeronasal responsiveness) to euthanized mice injected with size-fractionated venom, Crotalus atrox responded significantly to only one protein peak. Assays for enzymes common in rattlesnake venoms, such as exonuclease, L-amino acid oxidase, metalloproteinase, thrombin-like and kallikrein-like serine proteases and phospholipase A(2), showed that vomeronasal responsiveness was not dependent on enzymatic activity. Using mass spectrometry and N-terminal sequencing, we identified the proteins responsible for envenomated prey discrimination as the non-enzymatic disintegrins crotatroxin 1 and 2. Our results demonstrate a novel and critical biological role for venom disintegrins far beyond their well-established role in disruption of cell-cell and cell-extracellular matrix interactions. CONCLUSIONS: These findings reveal the evolutionary significance of free disintegrins in venoms as the molecular mechanism in vipers allowing for effective relocation of envenomated prey. The presence of free disintegrins in turn has led to evolution of a major behavioral adaptation (strike-and-release), characteristic of only rattlesnakes and other vipers, which exploits and refines the efficiency of a pre-existing chemical means of predation and a highly sensitive olfaction system. This system of a predator chemically tagging prey represents a novel trend in the coevolution of predator-prey relationships. BioMed Central 2013-03-01 /pmc/articles/PMC3635877/ /pubmed/23452837 http://dx.doi.org/10.1186/1741-7007-11-20 Text en Copyright © 2013 Saviola et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Saviola, Anthony J Chiszar, David Busch, Chardelle Mackessy, Stephen P Molecular basis for prey relocation in viperid snakes |
title | Molecular basis for prey relocation in viperid snakes |
title_full | Molecular basis for prey relocation in viperid snakes |
title_fullStr | Molecular basis for prey relocation in viperid snakes |
title_full_unstemmed | Molecular basis for prey relocation in viperid snakes |
title_short | Molecular basis for prey relocation in viperid snakes |
title_sort | molecular basis for prey relocation in viperid snakes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635877/ https://www.ncbi.nlm.nih.gov/pubmed/23452837 http://dx.doi.org/10.1186/1741-7007-11-20 |
work_keys_str_mv | AT saviolaanthonyj molecularbasisforpreyrelocationinviperidsnakes AT chiszardavid molecularbasisforpreyrelocationinviperidsnakes AT buschchardelle molecularbasisforpreyrelocationinviperidsnakes AT mackessystephenp molecularbasisforpreyrelocationinviperidsnakes |