Cargando…
A new unsupervised gene clustering algorithm based on the integration of biological knowledge into expression data
BACKGROUND: Gene clustering algorithms are massively used by biologists when analysing omics data. Classical gene clustering strategies are based on the use of expression data only, directly as in Heatmaps, or indirectly as in clustering based on coexpression networks for instance. However, the clas...
Autores principales: | Verbanck, Marie, Lê, Sébastien, Pagès, Jérôme |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635920/ https://www.ncbi.nlm.nih.gov/pubmed/23387364 http://dx.doi.org/10.1186/1471-2105-14-42 |
Ejemplares similares
-
Unsupervised gene selection using biological knowledge : application in sample clustering
por: Acharya, Sudipta, et al.
Publicado: (2017) -
Performance determinants of unsupervised clustering methods for microbiome data
por: Shi, Yushu, et al.
Publicado: (2022) -
A robustness metric for biological data clustering algorithms
por: Lu, Yuping, et al.
Publicado: (2019) -
An unsupervised image segmentation algorithm for coronary angiography
por: Yin, Zong-Xian, et al.
Publicado: (2022) -
Simultaneous analysis of distinct Omics data sets with integration of biological knowledge: Multiple Factor Analysis approach
por: de Tayrac, Marie, et al.
Publicado: (2009)