Cargando…
Bioluminescence imaging for IL-1β expression in experimental colitis
BACKGROUND: Interleukin 1 beta (IL-1β) contributes to the development of inflammatory bowel disease (IBD) and is correlated with the severity of intestinal inflammation. However, the precise source of IL-1β producing cells in DSS colitis is currently not known. METHODS: To determine IL-1β activity d...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636018/ https://www.ncbi.nlm.nih.gov/pubmed/23577872 http://dx.doi.org/10.1186/1476-9255-10-16 |
Sumario: | BACKGROUND: Interleukin 1 beta (IL-1β) contributes to the development of inflammatory bowel disease (IBD) and is correlated with the severity of intestinal inflammation. However, the precise source of IL-1β producing cells in DSS colitis is currently not known. METHODS: To determine IL-1β activity during intestinal inflammation in real time, an IL-1β transgenic mouse has been generated by incorporating the firefly luciferase gene driven by a 4.5-kb fragment of human IL-1β gene promoter (named cHS4I-hIL-1βP-Luc transgenic mice). Dextran sodium sulfate (DSS) induced colitis was confirmed with clinical presentation and histopathology. RESULTS: A substantial increase in luciferase activity (reflecting IL-1β production) in the region of inflamed colon was observed in a time dependent manner, followed by additional activity in the region of the mesenteric lymph node. The up-regulated luciferase activity was suppressed by dexamethasone (steroids) during DSS challenge, consistent with reduced severity of colitis, confirming the specificity of luciferase activity. CONCLUSIONS: Our data suggests that bioluminescence is an interesting technology, which may be used to evaluate transcription of various genes in real time in experimental colitis. |
---|