Cargando…
Empirical Mode Decomposition and k-Nearest Embedding Vectors for Timely Analyses of Antibiotic Resistance Trends
BACKGROUND: Antibiotic resistance is a major worldwide public health concern. In clinical settings, timely antibiotic resistance information is key for care providers as it allows appropriate targeted treatment or improved empirical treatment when the specific results of the patient are not yet avai...
Autores principales: | Teodoro, Douglas, Lovis, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636283/ https://www.ncbi.nlm.nih.gov/pubmed/23637796 http://dx.doi.org/10.1371/journal.pone.0061180 |
Ejemplares similares
-
Ataxic speech disorders and Parkinson’s disease diagnostics via stochastic embedding of empirical mode decomposition
por: Campi, Marta, et al.
Publicado: (2023) -
Empirical mode decomposition with missing values
por: Kim, Donghoh, et al.
Publicado: (2016) -
Improving Empirical Mode Decomposition Using Support Vector Machines for Multifocus Image Fusion
por: Chen, Shaohui, et al.
Publicado: (2008) -
Evaluating trends and seasonality in modeled PM(2.5) concentrations using empirical mode decomposition
por: Luo, Huiying, et al.
Publicado: (2020) -
Ultrasound Elastography Using Empirical Mode Decomposition Analysis
por: Sadeghi, Sajjad, et al.
Publicado: (2014)