Cargando…

Factors Expressed by Murine Embryonic Pancreatic Mesenchyme Enhance Generation of Insulin-Producing Cells From hESCs

Islet transplantation has proven to be a successful strategy to restore normoglycemia in patients with type 1 diabetes (T1D). However, the dearth of cadaveric islets available for transplantation hampers the widespread application of this treatment option. Although human embryonic stem cells and ind...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Tingxia, Landsman, Limor, Li, Na, Hebrok, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636645/
https://www.ncbi.nlm.nih.gov/pubmed/23305648
http://dx.doi.org/10.2337/db12-0167
_version_ 1782267360292372480
author Guo, Tingxia
Landsman, Limor
Li, Na
Hebrok, Matthias
author_facet Guo, Tingxia
Landsman, Limor
Li, Na
Hebrok, Matthias
author_sort Guo, Tingxia
collection PubMed
description Islet transplantation has proven to be a successful strategy to restore normoglycemia in patients with type 1 diabetes (T1D). However, the dearth of cadaveric islets available for transplantation hampers the widespread application of this treatment option. Although human embryonic stem cells and induced pluripotent stem cells are capable of generating insulin-producing cells in vitro when provided with the appropriate inductive cues, the insulin-expressing cells that develop behave more like immature β-cells with minimal sensitivity to glucose stimulation. Here, we identify a set of signaling factors expressed in mouse embryonic mesenchyme during the time when foregut and pancreatic progenitors are specified and test their activities during in vitro differentiation of human embryonic stem cells. Several of the identified factors work in concert to expand the pancreatic progenitor pool. Interestingly, transforming growth factor (TGF)-β ligands, most potent in inducing pancreatic progenitors, display strong inhibitory effects on subsequent endocrine cell differentiation. Treatment with TGF-β ligands, followed by the addition of a TGF-β receptor antagonist, dramatically increased the number of insulin-producing cells in vitro, demonstrating the need for dynamic temporal regulation of TGF-β signaling during in vitro differentiation. These studies illustrate the need to precisely mimic the in vivo conditions to fully recapitulate pancreatic lineage specification in vitro.
format Online
Article
Text
id pubmed-3636645
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher American Diabetes Association
record_format MEDLINE/PubMed
spelling pubmed-36366452014-05-01 Factors Expressed by Murine Embryonic Pancreatic Mesenchyme Enhance Generation of Insulin-Producing Cells From hESCs Guo, Tingxia Landsman, Limor Li, Na Hebrok, Matthias Diabetes Original Research Islet transplantation has proven to be a successful strategy to restore normoglycemia in patients with type 1 diabetes (T1D). However, the dearth of cadaveric islets available for transplantation hampers the widespread application of this treatment option. Although human embryonic stem cells and induced pluripotent stem cells are capable of generating insulin-producing cells in vitro when provided with the appropriate inductive cues, the insulin-expressing cells that develop behave more like immature β-cells with minimal sensitivity to glucose stimulation. Here, we identify a set of signaling factors expressed in mouse embryonic mesenchyme during the time when foregut and pancreatic progenitors are specified and test their activities during in vitro differentiation of human embryonic stem cells. Several of the identified factors work in concert to expand the pancreatic progenitor pool. Interestingly, transforming growth factor (TGF)-β ligands, most potent in inducing pancreatic progenitors, display strong inhibitory effects on subsequent endocrine cell differentiation. Treatment with TGF-β ligands, followed by the addition of a TGF-β receptor antagonist, dramatically increased the number of insulin-producing cells in vitro, demonstrating the need for dynamic temporal regulation of TGF-β signaling during in vitro differentiation. These studies illustrate the need to precisely mimic the in vivo conditions to fully recapitulate pancreatic lineage specification in vitro. American Diabetes Association 2013-05 2013-04-16 /pmc/articles/PMC3636645/ /pubmed/23305648 http://dx.doi.org/10.2337/db12-0167 Text en © 2013 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
spellingShingle Original Research
Guo, Tingxia
Landsman, Limor
Li, Na
Hebrok, Matthias
Factors Expressed by Murine Embryonic Pancreatic Mesenchyme Enhance Generation of Insulin-Producing Cells From hESCs
title Factors Expressed by Murine Embryonic Pancreatic Mesenchyme Enhance Generation of Insulin-Producing Cells From hESCs
title_full Factors Expressed by Murine Embryonic Pancreatic Mesenchyme Enhance Generation of Insulin-Producing Cells From hESCs
title_fullStr Factors Expressed by Murine Embryonic Pancreatic Mesenchyme Enhance Generation of Insulin-Producing Cells From hESCs
title_full_unstemmed Factors Expressed by Murine Embryonic Pancreatic Mesenchyme Enhance Generation of Insulin-Producing Cells From hESCs
title_short Factors Expressed by Murine Embryonic Pancreatic Mesenchyme Enhance Generation of Insulin-Producing Cells From hESCs
title_sort factors expressed by murine embryonic pancreatic mesenchyme enhance generation of insulin-producing cells from hescs
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636645/
https://www.ncbi.nlm.nih.gov/pubmed/23305648
http://dx.doi.org/10.2337/db12-0167
work_keys_str_mv AT guotingxia factorsexpressedbymurineembryonicpancreaticmesenchymeenhancegenerationofinsulinproducingcellsfromhescs
AT landsmanlimor factorsexpressedbymurineembryonicpancreaticmesenchymeenhancegenerationofinsulinproducingcellsfromhescs
AT lina factorsexpressedbymurineembryonicpancreaticmesenchymeenhancegenerationofinsulinproducingcellsfromhescs
AT hebrokmatthias factorsexpressedbymurineembryonicpancreaticmesenchymeenhancegenerationofinsulinproducingcellsfromhescs