Cargando…
The neurotoxic effect of clindamycin - induced gut bacterial imbalance and orally administered propionic acid on DNA damage assessed by the comet assay: protective potency of carnosine and carnitine
BACKGROUND: Comet assay is a quick method for assessing DNA damage in individual cells. It allows the detection of single and double DNA strand breaks, which represent the direct effect of some damaging agents. This study uses standard comet quantification models to compare the neurotoxic effect of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637143/ https://www.ncbi.nlm.nih.gov/pubmed/23587115 http://dx.doi.org/10.1186/1757-4749-5-9 |
Sumario: | BACKGROUND: Comet assay is a quick method for assessing DNA damage in individual cells. It allows the detection of single and double DNA strand breaks, which represent the direct effect of some damaging agents. This study uses standard comet quantification models to compare the neurotoxic effect of orally administered propionic acid (PA) to that produced as a metabolite of bacterial overgrowth induced by clindamycin. Additionally, the protective effect of carnosine and carnitine as natural dietary supplements is assessed. METHODS: Single cell gel electrophoresis (comet assays) were performed on brain cortex and medulla samples after removal from nine groups of hamsters including: a control (untreated) group; PA-intoxicated group; clindamycin treated group; clindamycin-carnosine group and; clindamycin-carnitine group. RESULTS: There were significant double strand breaks recorded as tail length, tail moment and % DNA damage in PA and clindamycin-treated groups for the cortex and medulla compared to the control group. Neuroprotective effects of carnosine and carnitine were observed. Receiver Operating Characteristics curve (ROC) analysis showed satisfactory values of sensitivity and specificity of the comet assay parameters. CONCLUSION: Percentage DNA damage, tail length, and tail moment are adequate biomarkers of PA neurotoxicity due to oral administration or as a metabolite of induced enteric bacterial overgrowth. Establishing biomarkers of these two exposures is important for protecting children’s health by documenting the role of the imbalance in gut microbiota in the etiology of autism through the gut-brain axis. These outcomes will help efforts directed at controlling the prevalence of autism, a disorder recently related to PA neurotoxicity. |
---|