Cargando…
Rapid adaptation to mammalian sociality via sexually selected traits
BACKGROUND: Laboratory studies show that the components of sexual selection (e.g., mate choice and intrasexual competition) can profoundly affect the development and fitness of offspring. Less is known, however, about the total effects of sexual selection on offspring in normal social conditions. Co...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637274/ https://www.ncbi.nlm.nih.gov/pubmed/23577674 http://dx.doi.org/10.1186/1471-2148-13-81 |
_version_ | 1782267447043162112 |
---|---|
author | Nelson, Adam C Colson, Kevin E Harmon, Steve Potts, Wayne K |
author_facet | Nelson, Adam C Colson, Kevin E Harmon, Steve Potts, Wayne K |
author_sort | Nelson, Adam C |
collection | PubMed |
description | BACKGROUND: Laboratory studies show that the components of sexual selection (e.g., mate choice and intrasexual competition) can profoundly affect the development and fitness of offspring. Less is known, however, about the total effects of sexual selection on offspring in normal social conditions. Complex social networks, such as dominance hierarchies, regulate the opportunity for mating success, and are often missing from laboratory studies. Social selection is an extended view of sexual selection that incorporates competition during sexual and nonsexual interactions, and predicts complex evolutionary dynamics. Whether social selection improves or constrains offspring fitness is controversial. RESULTS: To identify fitness consequences of social selection, wild-derived mice that had bred under laboratory conditions for eight generations were re-introduced to naturalistic competition in enclosures for three consecutive generations (promiscuous line). In parallel, a control lineage bred in cages under random mate assignment (monogamous line). A direct competition experiment using second-generation animals revealed that promiscuous line males had greater reproductive success than monogamous line males (particularly during extra-territorial matings), in spite of higher mortality and equivalent success in social dominance and sperm competition. There were no major female fitness effects (though promiscuous line females had fewer litters than monogamous line females). This result suggested that selection primarily acted upon a sexually attractive male phenotype in the promiscuous line, a hypothesis we confirmed in female odor and mating preference trials. CONCLUSIONS: We present novel evidence for the strength of sexual selection under normal social conditions, and show rapid male adaptation driven largely by sexual trait expression, with tradeoffs in survivorship and female fecundity. Re-introducing wild-derived mice to competition quickly uncovers sexually selected phenotypes otherwise lost in normal colony breeding. |
format | Online Article Text |
id | pubmed-3637274 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36372742013-04-27 Rapid adaptation to mammalian sociality via sexually selected traits Nelson, Adam C Colson, Kevin E Harmon, Steve Potts, Wayne K BMC Evol Biol Research Article BACKGROUND: Laboratory studies show that the components of sexual selection (e.g., mate choice and intrasexual competition) can profoundly affect the development and fitness of offspring. Less is known, however, about the total effects of sexual selection on offspring in normal social conditions. Complex social networks, such as dominance hierarchies, regulate the opportunity for mating success, and are often missing from laboratory studies. Social selection is an extended view of sexual selection that incorporates competition during sexual and nonsexual interactions, and predicts complex evolutionary dynamics. Whether social selection improves or constrains offspring fitness is controversial. RESULTS: To identify fitness consequences of social selection, wild-derived mice that had bred under laboratory conditions for eight generations were re-introduced to naturalistic competition in enclosures for three consecutive generations (promiscuous line). In parallel, a control lineage bred in cages under random mate assignment (monogamous line). A direct competition experiment using second-generation animals revealed that promiscuous line males had greater reproductive success than monogamous line males (particularly during extra-territorial matings), in spite of higher mortality and equivalent success in social dominance and sperm competition. There were no major female fitness effects (though promiscuous line females had fewer litters than monogamous line females). This result suggested that selection primarily acted upon a sexually attractive male phenotype in the promiscuous line, a hypothesis we confirmed in female odor and mating preference trials. CONCLUSIONS: We present novel evidence for the strength of sexual selection under normal social conditions, and show rapid male adaptation driven largely by sexual trait expression, with tradeoffs in survivorship and female fecundity. Re-introducing wild-derived mice to competition quickly uncovers sexually selected phenotypes otherwise lost in normal colony breeding. BioMed Central 2013-04-11 /pmc/articles/PMC3637274/ /pubmed/23577674 http://dx.doi.org/10.1186/1471-2148-13-81 Text en Copyright © 2013 Nelson et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Nelson, Adam C Colson, Kevin E Harmon, Steve Potts, Wayne K Rapid adaptation to mammalian sociality via sexually selected traits |
title | Rapid adaptation to mammalian sociality via sexually selected traits |
title_full | Rapid adaptation to mammalian sociality via sexually selected traits |
title_fullStr | Rapid adaptation to mammalian sociality via sexually selected traits |
title_full_unstemmed | Rapid adaptation to mammalian sociality via sexually selected traits |
title_short | Rapid adaptation to mammalian sociality via sexually selected traits |
title_sort | rapid adaptation to mammalian sociality via sexually selected traits |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637274/ https://www.ncbi.nlm.nih.gov/pubmed/23577674 http://dx.doi.org/10.1186/1471-2148-13-81 |
work_keys_str_mv | AT nelsonadamc rapidadaptationtomammaliansocialityviasexuallyselectedtraits AT colsonkevine rapidadaptationtomammaliansocialityviasexuallyselectedtraits AT harmonsteve rapidadaptationtomammaliansocialityviasexuallyselectedtraits AT pottswaynek rapidadaptationtomammaliansocialityviasexuallyselectedtraits |