Cargando…

Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation

BACKGROUND: The involvement of particulate matter (PM) in cardiorespiratory diseases is now established in developed countries whereas in developing areas such as Africa with a high level of specific pollution, PM pollution and its effects are poorly studied. Our objective was to characterize the bi...

Descripción completa

Detalles Bibliográficos
Autores principales: Val, Stéphanie, Liousse, Cathy, Doumbia, El Hadji Thierno, Galy-Lacaux, Corinne, Cachier, Hélène, Marchand, Nicolas, Badel, Anne, Gardrat, Eric, Sylvestre, Alexandre, Baeza-Squiban, Armelle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637552/
https://www.ncbi.nlm.nih.gov/pubmed/23548138
http://dx.doi.org/10.1186/1743-8977-10-10
_version_ 1782267499143757824
author Val, Stéphanie
Liousse, Cathy
Doumbia, El Hadji Thierno
Galy-Lacaux, Corinne
Cachier, Hélène
Marchand, Nicolas
Badel, Anne
Gardrat, Eric
Sylvestre, Alexandre
Baeza-Squiban, Armelle
author_facet Val, Stéphanie
Liousse, Cathy
Doumbia, El Hadji Thierno
Galy-Lacaux, Corinne
Cachier, Hélène
Marchand, Nicolas
Badel, Anne
Gardrat, Eric
Sylvestre, Alexandre
Baeza-Squiban, Armelle
author_sort Val, Stéphanie
collection PubMed
description BACKGROUND: The involvement of particulate matter (PM) in cardiorespiratory diseases is now established in developed countries whereas in developing areas such as Africa with a high level of specific pollution, PM pollution and its effects are poorly studied. Our objective was to characterize the biological reactivity of urban African aerosols on human bronchial epithelial cells in relation to PM physico-chemical properties to identify toxic sources. METHODS: Size-speciated aerosol chemical composition was analyzed in Bamako (BK, Mali, 2 samples with one having desert dust event BK1) and Dakar (DK; Senegal) for Ultrafine UF, Fine F and Coarse C PM. PM reactivity was studied in human bronchial epithelial cells investigating six biomarkers (oxidative stress responsive genes and pro-inflammatory cytokines). RESULTS: PM mass concentrations were mainly distributed in coarse mode (60%) and were impressive in BK1 due to the desert dust event. BK2 and DK samples showed a high content of total carbon characteristic of urban areas. The DK sample had huge PAH quantities in bulk aerosol compared with BK that had more water soluble organic carbon and metals. Whatever the site, UF and F PM triggered the mRNA expression of the different biomarkers whereas coarse PM had little or no effect. The GM-CSF biomarker was the most discriminating and showed the strongest pro-inflammatory effect of BK2 PM. The analysis of gene expression signature and of their correlation with main PM compounds revealed that PM-induced responses are mainly related to organic compounds. The toxicity of African aerosols is carried by the finest PM as with Parisian aerosols, but when considering PM mass concentrations, the African population is more highly exposed to toxic particulate pollution than French population. Regarding the prevailing sources in each site, aerosol biological impacts are higher for incomplete combustion sources resulting from two-wheel vehicles and domestic fires than from diesel vehicles (Dakar). Desert dust events seem to produce fewer biological impacts than anthropogenic sources. DISCUSSION: Our study shows that combustion sources contribute to the high toxicity of F and UF PM of African urban aerosols, and underlines the importance of emission mitigation and the imperative need to evaluate and to regulate particulate pollution in Africa.
format Online
Article
Text
id pubmed-3637552
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-36375522013-05-03 Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation Val, Stéphanie Liousse, Cathy Doumbia, El Hadji Thierno Galy-Lacaux, Corinne Cachier, Hélène Marchand, Nicolas Badel, Anne Gardrat, Eric Sylvestre, Alexandre Baeza-Squiban, Armelle Part Fibre Toxicol Research BACKGROUND: The involvement of particulate matter (PM) in cardiorespiratory diseases is now established in developed countries whereas in developing areas such as Africa with a high level of specific pollution, PM pollution and its effects are poorly studied. Our objective was to characterize the biological reactivity of urban African aerosols on human bronchial epithelial cells in relation to PM physico-chemical properties to identify toxic sources. METHODS: Size-speciated aerosol chemical composition was analyzed in Bamako (BK, Mali, 2 samples with one having desert dust event BK1) and Dakar (DK; Senegal) for Ultrafine UF, Fine F and Coarse C PM. PM reactivity was studied in human bronchial epithelial cells investigating six biomarkers (oxidative stress responsive genes and pro-inflammatory cytokines). RESULTS: PM mass concentrations were mainly distributed in coarse mode (60%) and were impressive in BK1 due to the desert dust event. BK2 and DK samples showed a high content of total carbon characteristic of urban areas. The DK sample had huge PAH quantities in bulk aerosol compared with BK that had more water soluble organic carbon and metals. Whatever the site, UF and F PM triggered the mRNA expression of the different biomarkers whereas coarse PM had little or no effect. The GM-CSF biomarker was the most discriminating and showed the strongest pro-inflammatory effect of BK2 PM. The analysis of gene expression signature and of their correlation with main PM compounds revealed that PM-induced responses are mainly related to organic compounds. The toxicity of African aerosols is carried by the finest PM as with Parisian aerosols, but when considering PM mass concentrations, the African population is more highly exposed to toxic particulate pollution than French population. Regarding the prevailing sources in each site, aerosol biological impacts are higher for incomplete combustion sources resulting from two-wheel vehicles and domestic fires than from diesel vehicles (Dakar). Desert dust events seem to produce fewer biological impacts than anthropogenic sources. DISCUSSION: Our study shows that combustion sources contribute to the high toxicity of F and UF PM of African urban aerosols, and underlines the importance of emission mitigation and the imperative need to evaluate and to regulate particulate pollution in Africa. BioMed Central 2013-04-02 /pmc/articles/PMC3637552/ /pubmed/23548138 http://dx.doi.org/10.1186/1743-8977-10-10 Text en Copyright © 2013 Val et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Val, Stéphanie
Liousse, Cathy
Doumbia, El Hadji Thierno
Galy-Lacaux, Corinne
Cachier, Hélène
Marchand, Nicolas
Badel, Anne
Gardrat, Eric
Sylvestre, Alexandre
Baeza-Squiban, Armelle
Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation
title Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation
title_full Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation
title_fullStr Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation
title_full_unstemmed Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation
title_short Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation
title_sort physico-chemical characterization of african urban aerosols (bamako in mali and dakar in senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637552/
https://www.ncbi.nlm.nih.gov/pubmed/23548138
http://dx.doi.org/10.1186/1743-8977-10-10
work_keys_str_mv AT valstephanie physicochemicalcharacterizationofafricanurbanaerosolsbamakoinmalianddakarinsenegalandtheirtoxiceffectsinhumanbronchialepithelialcellsdescriptionofaworryingsituation
AT lioussecathy physicochemicalcharacterizationofafricanurbanaerosolsbamakoinmalianddakarinsenegalandtheirtoxiceffectsinhumanbronchialepithelialcellsdescriptionofaworryingsituation
AT doumbiaelhadjithierno physicochemicalcharacterizationofafricanurbanaerosolsbamakoinmalianddakarinsenegalandtheirtoxiceffectsinhumanbronchialepithelialcellsdescriptionofaworryingsituation
AT galylacauxcorinne physicochemicalcharacterizationofafricanurbanaerosolsbamakoinmalianddakarinsenegalandtheirtoxiceffectsinhumanbronchialepithelialcellsdescriptionofaworryingsituation
AT cachierhelene physicochemicalcharacterizationofafricanurbanaerosolsbamakoinmalianddakarinsenegalandtheirtoxiceffectsinhumanbronchialepithelialcellsdescriptionofaworryingsituation
AT marchandnicolas physicochemicalcharacterizationofafricanurbanaerosolsbamakoinmalianddakarinsenegalandtheirtoxiceffectsinhumanbronchialepithelialcellsdescriptionofaworryingsituation
AT badelanne physicochemicalcharacterizationofafricanurbanaerosolsbamakoinmalianddakarinsenegalandtheirtoxiceffectsinhumanbronchialepithelialcellsdescriptionofaworryingsituation
AT gardrateric physicochemicalcharacterizationofafricanurbanaerosolsbamakoinmalianddakarinsenegalandtheirtoxiceffectsinhumanbronchialepithelialcellsdescriptionofaworryingsituation
AT sylvestrealexandre physicochemicalcharacterizationofafricanurbanaerosolsbamakoinmalianddakarinsenegalandtheirtoxiceffectsinhumanbronchialepithelialcellsdescriptionofaworryingsituation
AT baezasquibanarmelle physicochemicalcharacterizationofafricanurbanaerosolsbamakoinmalianddakarinsenegalandtheirtoxiceffectsinhumanbronchialepithelialcellsdescriptionofaworryingsituation