Cargando…
Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study
BACKGROUND: Brain-computer interfaces (BCIs) were recently recognized as a method to promote neuroplastic effects in motor rehabilitation. The core of a BCI is a decoding stage by which signals from the brain are classified into different brain-states. The goal of this paper was to test the feasibil...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637588/ https://www.ncbi.nlm.nih.gov/pubmed/23336819 http://dx.doi.org/10.1186/1743-0003-10-4 |
_version_ | 1782267507444285440 |
---|---|
author | Zimmermann, Raphael Marchal-Crespo, Laura Edelmann, Janis Lambercy, Olivier Fluet, Marie-Christine Riener, Robert Wolf, Martin Gassert, Roger |
author_facet | Zimmermann, Raphael Marchal-Crespo, Laura Edelmann, Janis Lambercy, Olivier Fluet, Marie-Christine Riener, Robert Wolf, Martin Gassert, Roger |
author_sort | Zimmermann, Raphael |
collection | PubMed |
description | BACKGROUND: Brain-computer interfaces (BCIs) were recently recognized as a method to promote neuroplastic effects in motor rehabilitation. The core of a BCI is a decoding stage by which signals from the brain are classified into different brain-states. The goal of this paper was to test the feasibility of a single trial classifier to detect motor execution based on signals from cortical motor regions, measured by functional near-infrared spectroscopy (fNIRS), and the response of the autonomic nervous system. An approach that allowed for individually tuned classifier topologies was opted for. This promises to be a first step towards a novel form of active movement therapy that could be operated and controlled by paretic patients. METHODS: Seven healthy subjects performed repetitions of an isometric finger pinching task, while changes in oxy- and deoxyhemoglobin concentrations were measured in the contralateral primary motor cortex and ventral premotor cortex using fNIRS. Simultaneously, heart rate, breathing rate, blood pressure and skin conductance response were measured. Hidden Markov models (HMM) were used to classify between active isometric pinching phases and rest. The classification performance (accuracy, sensitivity and specificity) was assessed for two types of input data: (i) fNIRS-signals only and (ii) fNIRS- and biosignals combined. RESULTS: fNIRS data were classified with an average accuracy of 79.4%, which increased significantly to 88.5% when biosignals were also included (p=0.02). Comparable increases were observed for the sensitivity (from 78.3% to 87.2%, p=0.008) and specificity (from 80.5% to 89.9%, p=0.062). CONCLUSIONS: This study showed, for the first time, promising classification results with hemodynamic fNIRS data obtained from motor regions and simultaneously acquired biosignals. Combining fNIRS data with biosignals has a beneficial effect, opening new avenues for the development of brain-body-computer interfaces for rehabilitation applications. Further research is required to identify the contribution of each modality to the decoding capability of the subject’s hemodynamic and physiological state. |
format | Online Article Text |
id | pubmed-3637588 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36375882013-05-03 Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study Zimmermann, Raphael Marchal-Crespo, Laura Edelmann, Janis Lambercy, Olivier Fluet, Marie-Christine Riener, Robert Wolf, Martin Gassert, Roger J Neuroeng Rehabil Research BACKGROUND: Brain-computer interfaces (BCIs) were recently recognized as a method to promote neuroplastic effects in motor rehabilitation. The core of a BCI is a decoding stage by which signals from the brain are classified into different brain-states. The goal of this paper was to test the feasibility of a single trial classifier to detect motor execution based on signals from cortical motor regions, measured by functional near-infrared spectroscopy (fNIRS), and the response of the autonomic nervous system. An approach that allowed for individually tuned classifier topologies was opted for. This promises to be a first step towards a novel form of active movement therapy that could be operated and controlled by paretic patients. METHODS: Seven healthy subjects performed repetitions of an isometric finger pinching task, while changes in oxy- and deoxyhemoglobin concentrations were measured in the contralateral primary motor cortex and ventral premotor cortex using fNIRS. Simultaneously, heart rate, breathing rate, blood pressure and skin conductance response were measured. Hidden Markov models (HMM) were used to classify between active isometric pinching phases and rest. The classification performance (accuracy, sensitivity and specificity) was assessed for two types of input data: (i) fNIRS-signals only and (ii) fNIRS- and biosignals combined. RESULTS: fNIRS data were classified with an average accuracy of 79.4%, which increased significantly to 88.5% when biosignals were also included (p=0.02). Comparable increases were observed for the sensitivity (from 78.3% to 87.2%, p=0.008) and specificity (from 80.5% to 89.9%, p=0.062). CONCLUSIONS: This study showed, for the first time, promising classification results with hemodynamic fNIRS data obtained from motor regions and simultaneously acquired biosignals. Combining fNIRS data with biosignals has a beneficial effect, opening new avenues for the development of brain-body-computer interfaces for rehabilitation applications. Further research is required to identify the contribution of each modality to the decoding capability of the subject’s hemodynamic and physiological state. BioMed Central 2013-01-21 /pmc/articles/PMC3637588/ /pubmed/23336819 http://dx.doi.org/10.1186/1743-0003-10-4 Text en Copyright © 2013 Zimmermann et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Zimmermann, Raphael Marchal-Crespo, Laura Edelmann, Janis Lambercy, Olivier Fluet, Marie-Christine Riener, Robert Wolf, Martin Gassert, Roger Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study |
title | Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study |
title_full | Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study |
title_fullStr | Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study |
title_full_unstemmed | Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study |
title_short | Detection of motor execution using a hybrid fNIRS-biosignal BCI: a feasibility study |
title_sort | detection of motor execution using a hybrid fnirs-biosignal bci: a feasibility study |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637588/ https://www.ncbi.nlm.nih.gov/pubmed/23336819 http://dx.doi.org/10.1186/1743-0003-10-4 |
work_keys_str_mv | AT zimmermannraphael detectionofmotorexecutionusingahybridfnirsbiosignalbciafeasibilitystudy AT marchalcrespolaura detectionofmotorexecutionusingahybridfnirsbiosignalbciafeasibilitystudy AT edelmannjanis detectionofmotorexecutionusingahybridfnirsbiosignalbciafeasibilitystudy AT lambercyolivier detectionofmotorexecutionusingahybridfnirsbiosignalbciafeasibilitystudy AT fluetmariechristine detectionofmotorexecutionusingahybridfnirsbiosignalbciafeasibilitystudy AT rienerrobert detectionofmotorexecutionusingahybridfnirsbiosignalbciafeasibilitystudy AT wolfmartin detectionofmotorexecutionusingahybridfnirsbiosignalbciafeasibilitystudy AT gassertroger detectionofmotorexecutionusingahybridfnirsbiosignalbciafeasibilitystudy |