Cargando…

Integrated Analysis of Transcriptomic and Proteomic Data

Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions....

Descripción completa

Detalles Bibliográficos
Autores principales: Haider, Saad, Pal, Ranadip
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bentham Science Publishers 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637682/
https://www.ncbi.nlm.nih.gov/pubmed/24082820
http://dx.doi.org/10.2174/1389202911314020003
Descripción
Sumario:Until recently, understanding the regulatory behavior of cells has been pursued through independent analysis of the transcriptome or the proteome. Based on the central dogma, it was generally assumed that there exist a direct correspondence between mRNA transcripts and generated protein expressions. However, recent studies have shown that the correlation between mRNA and Protein expressions can be low due to various factors such as different half lives and post transcription machinery. Thus, a joint analysis of the transcriptomic and proteomic data can provide useful insights that may not be deciphered from individual analysis of mRNA or protein expressions. This article reviews the existing major approaches for joint analysis of transcriptomic and proteomic data. We categorize the different approaches into eight main categories based on the initial algorithm and final analysis goal. We further present analogies with other domains and discuss the existing research problems in this area.