Cargando…
Dynamic regulatory network controlling Th17 cell differentiation
Despite their importance, the molecular circuits that control the differentiation of naïve T cells remain largely unknown. Recent studies that reconstructed regulatory networks in mammalian cells have focused on short-term responses and relied on perturbation-based approaches that cannot be readily...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637864/ https://www.ncbi.nlm.nih.gov/pubmed/23467089 http://dx.doi.org/10.1038/nature11981 |
Sumario: | Despite their importance, the molecular circuits that control the differentiation of naïve T cells remain largely unknown. Recent studies that reconstructed regulatory networks in mammalian cells have focused on short-term responses and relied on perturbation-based approaches that cannot be readily applied to primary T cells. Here, we combine transcriptional profiling at high temporal resolution, novel computational algorithms, and innovative nanowire-based tools for performing perturbations in primary T cells to systematically derive and experimentally validate a model of the dynamic regulatory network that controls Th17 differentiation. The network consists of two self-reinforcing, but mutually antagonistic, modules, with 12 novel regulators, whose coupled action may be essential for maintaining the balance between Th17 and other CD4+ T cell subsets. Overall, our study identifies and validates 39 regulatory factors, embeds them within a comprehensive temporal network and reveals its organizational principles, and highlights novel drug targets for controlling Th17 differentiation. |
---|