Cargando…

Widespread and extensive lengthening of 3′ UTRs in the mammalian brain

Remarkable advances in techniques for gene expression profiling have radically changed our knowledge of the transcriptome. Recently, the mammalian brain was reported to express many long intergenic noncoding (lincRNAs) from loci downstream from protein-coding genes. Our experimental tests failed to...

Descripción completa

Detalles Bibliográficos
Autores principales: Miura, Pedro, Shenker, Sol, Andreu-Agullo, Celia, Westholm, Jakub O., Lai, Eric C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3638137/
https://www.ncbi.nlm.nih.gov/pubmed/23520388
http://dx.doi.org/10.1101/gr.146886.112
_version_ 1782475800464850944
author Miura, Pedro
Shenker, Sol
Andreu-Agullo, Celia
Westholm, Jakub O.
Lai, Eric C.
author_facet Miura, Pedro
Shenker, Sol
Andreu-Agullo, Celia
Westholm, Jakub O.
Lai, Eric C.
author_sort Miura, Pedro
collection PubMed
description Remarkable advances in techniques for gene expression profiling have radically changed our knowledge of the transcriptome. Recently, the mammalian brain was reported to express many long intergenic noncoding (lincRNAs) from loci downstream from protein-coding genes. Our experimental tests failed to validate specific accumulation of lincRNA transcripts, and instead revealed strongly distal 3′ UTRs generated by alternative cleavage and polyadenylation (APA). With this perspective in mind, we analyzed deep mammalian RNA-seq data using conservative criteria, and identified 2035 mouse and 1847 human genes that utilize substantially distal novel 3′ UTRs. Each of these extends at least 500 bases past the most distal 3′ termini available in Ensembl v65, and collectively they add 6.6 Mb and 5.1 Mb to the mRNA space of mouse and human, respectively. Extensive Northern analyses validated stable accumulation of distal APA isoforms, including transcripts bearing exceptionally long 3′ UTRs (many >10 kb and some >18 kb in length). The Northern data further illustrate that the extensions we annotated were not due to unprocessed transcriptional run-off events. Global tissue comparisons revealed that APA events yielding these extensions were most prevalent in the mouse and human brain. Finally, these extensions collectively contain thousands of conserved miRNA binding sites, and these are strongly enriched for many well-studied neural miRNAs. Altogether, these new 3′ UTR annotations greatly expand the scope of post-transcriptional regulatory networks in mammals, and have particular impact on the central nervous system.
format Online
Article
Text
id pubmed-3638137
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-36381372013-11-01 Widespread and extensive lengthening of 3′ UTRs in the mammalian brain Miura, Pedro Shenker, Sol Andreu-Agullo, Celia Westholm, Jakub O. Lai, Eric C. Genome Res Research Remarkable advances in techniques for gene expression profiling have radically changed our knowledge of the transcriptome. Recently, the mammalian brain was reported to express many long intergenic noncoding (lincRNAs) from loci downstream from protein-coding genes. Our experimental tests failed to validate specific accumulation of lincRNA transcripts, and instead revealed strongly distal 3′ UTRs generated by alternative cleavage and polyadenylation (APA). With this perspective in mind, we analyzed deep mammalian RNA-seq data using conservative criteria, and identified 2035 mouse and 1847 human genes that utilize substantially distal novel 3′ UTRs. Each of these extends at least 500 bases past the most distal 3′ termini available in Ensembl v65, and collectively they add 6.6 Mb and 5.1 Mb to the mRNA space of mouse and human, respectively. Extensive Northern analyses validated stable accumulation of distal APA isoforms, including transcripts bearing exceptionally long 3′ UTRs (many >10 kb and some >18 kb in length). The Northern data further illustrate that the extensions we annotated were not due to unprocessed transcriptional run-off events. Global tissue comparisons revealed that APA events yielding these extensions were most prevalent in the mouse and human brain. Finally, these extensions collectively contain thousands of conserved miRNA binding sites, and these are strongly enriched for many well-studied neural miRNAs. Altogether, these new 3′ UTR annotations greatly expand the scope of post-transcriptional regulatory networks in mammals, and have particular impact on the central nervous system. Cold Spring Harbor Laboratory Press 2013-05 /pmc/articles/PMC3638137/ /pubmed/23520388 http://dx.doi.org/10.1101/gr.146886.112 Text en © 2013, Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/3.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as described at http://creativecommons.org/licenses/by-nc/3.0/.
spellingShingle Research
Miura, Pedro
Shenker, Sol
Andreu-Agullo, Celia
Westholm, Jakub O.
Lai, Eric C.
Widespread and extensive lengthening of 3′ UTRs in the mammalian brain
title Widespread and extensive lengthening of 3′ UTRs in the mammalian brain
title_full Widespread and extensive lengthening of 3′ UTRs in the mammalian brain
title_fullStr Widespread and extensive lengthening of 3′ UTRs in the mammalian brain
title_full_unstemmed Widespread and extensive lengthening of 3′ UTRs in the mammalian brain
title_short Widespread and extensive lengthening of 3′ UTRs in the mammalian brain
title_sort widespread and extensive lengthening of 3′ utrs in the mammalian brain
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3638137/
https://www.ncbi.nlm.nih.gov/pubmed/23520388
http://dx.doi.org/10.1101/gr.146886.112
work_keys_str_mv AT miurapedro widespreadandextensivelengtheningof3utrsinthemammalianbrain
AT shenkersol widespreadandextensivelengtheningof3utrsinthemammalianbrain
AT andreuagullocelia widespreadandextensivelengtheningof3utrsinthemammalianbrain
AT westholmjakubo widespreadandextensivelengtheningof3utrsinthemammalianbrain
AT laiericc widespreadandextensivelengtheningof3utrsinthemammalianbrain