Cargando…
Computed tomography imaging-guided radiotherapy by targeting upconversion nanocubes with significant imaging and radiosensitization enhancements
The clinical potentials of radiotherapy could not be achieved completely because of the inaccurate positioning and inherent radioresistance of tumours. In this study, a novel active-targeting upconversion theranostic agent (arginine-glycine-aspartic acid-labelled BaYbF(5): 2% Er(3+) nanocube) was de...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3638198/ https://www.ncbi.nlm.nih.gov/pubmed/23624542 http://dx.doi.org/10.1038/srep01751 |
Sumario: | The clinical potentials of radiotherapy could not be achieved completely because of the inaccurate positioning and inherent radioresistance of tumours. In this study, a novel active-targeting upconversion theranostic agent (arginine-glycine-aspartic acid-labelled BaYbF(5): 2% Er(3+) nanocube) was developed for the first time to address these clinical demands. Heavy metal-based nanocubes (~10 nm) are potential theranostic agents with bifunctional features: computed tomography (CT) contrast agents for targeted tumour imaging and irradiation dose enhancers in tumours during radiotherapy. Remarkably, they showed low toxicity and excellent performance in active-targeting CT imaging and CT imaging-guided radiosensitizing therapy, which could greatly concentrate and enlarge the irradiation dose deposition in tumours to enhance therapeutic efficacy and minimize the damage to surrounding tissues. |
---|