Cargando…

Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid

BACKGROUND: Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The cl...

Descripción completa

Detalles Bibliográficos
Autores principales: Andres, Devon, Keyser, Brian M, Petrali, John, Benton, Betty, Hubbard, Kyle S, McNutt, Patrick M, Ray, Radharaman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639069/
https://www.ncbi.nlm.nih.gov/pubmed/23597229
http://dx.doi.org/10.1186/1471-2202-14-49
_version_ 1782475891490684928
author Andres, Devon
Keyser, Brian M
Petrali, John
Benton, Betty
Hubbard, Kyle S
McNutt, Patrick M
Ray, Radharaman
author_facet Andres, Devon
Keyser, Brian M
Petrali, John
Benton, Betty
Hubbard, Kyle S
McNutt, Patrick M
Ray, Radharaman
author_sort Andres, Devon
collection PubMed
description BACKGROUND: Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. RESULTS: We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca(2+)) channels and (c) Ca(2+)-dependent neurotransmitter ([(3)H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca(2+) channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca(2+)-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca(2+) concentrations following exposure to CG. CONCLUSION: Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity.
format Online
Article
Text
id pubmed-3639069
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-36390692013-04-30 Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid Andres, Devon Keyser, Brian M Petrali, John Benton, Betty Hubbard, Kyle S McNutt, Patrick M Ray, Radharaman BMC Neurosci Research Article BACKGROUND: Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. RESULTS: We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca(2+)) channels and (c) Ca(2+)-dependent neurotransmitter ([(3)H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca(2+) channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca(2+)-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca(2+) concentrations following exposure to CG. CONCLUSION: Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity. BioMed Central 2013-04-18 /pmc/articles/PMC3639069/ /pubmed/23597229 http://dx.doi.org/10.1186/1471-2202-14-49 Text en Copyright © 2013 Andres et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Andres, Devon
Keyser, Brian M
Petrali, John
Benton, Betty
Hubbard, Kyle S
McNutt, Patrick M
Ray, Radharaman
Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid
title Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid
title_full Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid
title_fullStr Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid
title_full_unstemmed Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid
title_short Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid
title_sort morphological and functional differentiation in be(2)-m17 human neuroblastoma cells by treatment with trans-retinoic acid
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639069/
https://www.ncbi.nlm.nih.gov/pubmed/23597229
http://dx.doi.org/10.1186/1471-2202-14-49
work_keys_str_mv AT andresdevon morphologicalandfunctionaldifferentiationinbe2m17humanneuroblastomacellsbytreatmentwithtransretinoicacid
AT keyserbrianm morphologicalandfunctionaldifferentiationinbe2m17humanneuroblastomacellsbytreatmentwithtransretinoicacid
AT petralijohn morphologicalandfunctionaldifferentiationinbe2m17humanneuroblastomacellsbytreatmentwithtransretinoicacid
AT bentonbetty morphologicalandfunctionaldifferentiationinbe2m17humanneuroblastomacellsbytreatmentwithtransretinoicacid
AT hubbardkyles morphologicalandfunctionaldifferentiationinbe2m17humanneuroblastomacellsbytreatmentwithtransretinoicacid
AT mcnuttpatrickm morphologicalandfunctionaldifferentiationinbe2m17humanneuroblastomacellsbytreatmentwithtransretinoicacid
AT rayradharaman morphologicalandfunctionaldifferentiationinbe2m17humanneuroblastomacellsbytreatmentwithtransretinoicacid