Cargando…
Explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life-history and oxidative stress
BACKGROUND: Avian malaria (Plasmodium sp.) is globally widespread, but considerable variation exists in infection (presence/absence) patterns at small spatial scales. This variation can be driven by variation in ecology, demography, and phenotypic characters, in particular those that influence the h...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639228/ https://www.ncbi.nlm.nih.gov/pubmed/23565726 http://dx.doi.org/10.1186/1472-6785-13-15 |
_version_ | 1782475923341180928 |
---|---|
author | Isaksson, Caroline Sepil, Irem Baramidze, Vladimer Sheldon, Ben C |
author_facet | Isaksson, Caroline Sepil, Irem Baramidze, Vladimer Sheldon, Ben C |
author_sort | Isaksson, Caroline |
collection | PubMed |
description | BACKGROUND: Avian malaria (Plasmodium sp.) is globally widespread, but considerable variation exists in infection (presence/absence) patterns at small spatial scales. This variation can be driven by variation in ecology, demography, and phenotypic characters, in particular those that influence the host’s resistance. Generation of reactive oxygen species (ROS) is one of the host’s initial immune responses to combat parasitic invasion. However, long-term ROS exposure can harm the host and the redox response therefore needs to be adjusted according to infection stage and host phenotype. Here we use experimental and correlational approaches to assess the relative importance of host density, habitat composition, individual level variation and redox physiology for Plasmodium infection in a wild population of great tits, Parus major. RESULTS: We found that 36% of the great tit population was infected with Plasmodium (22% P. relictum and 15% P. circumflexum prevalence) and that patterns of infection were Plasmodium species-specific. First, the infection of P. circumflexum was significantly higher in areas with experimental increased host density, whereas variation in P. relictum infection was mainly attributed to age, sex and reproduction. Second, great tit antioxidant responses – total and oxidizied glutathione - showed age- , sex- and Plasmodium species-specific patterns between infected and uninfected individuals, but reactive oxygen metabolites (ROM) showed only a weak explanatory power for patterns of P. relictum infection. Instead ROM significantly increased with Plasmodium parasitaemia. CONCLUSIONS: These results identify some key factors that influence Plasmodium infection in wild birds, and provide a potential explanation for the underlying physiological basis of recently documented negative effects of chronic avian malaria on survival and reproductive success. |
format | Online Article Text |
id | pubmed-3639228 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36392282013-04-30 Explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life-history and oxidative stress Isaksson, Caroline Sepil, Irem Baramidze, Vladimer Sheldon, Ben C BMC Ecol Research Article BACKGROUND: Avian malaria (Plasmodium sp.) is globally widespread, but considerable variation exists in infection (presence/absence) patterns at small spatial scales. This variation can be driven by variation in ecology, demography, and phenotypic characters, in particular those that influence the host’s resistance. Generation of reactive oxygen species (ROS) is one of the host’s initial immune responses to combat parasitic invasion. However, long-term ROS exposure can harm the host and the redox response therefore needs to be adjusted according to infection stage and host phenotype. Here we use experimental and correlational approaches to assess the relative importance of host density, habitat composition, individual level variation and redox physiology for Plasmodium infection in a wild population of great tits, Parus major. RESULTS: We found that 36% of the great tit population was infected with Plasmodium (22% P. relictum and 15% P. circumflexum prevalence) and that patterns of infection were Plasmodium species-specific. First, the infection of P. circumflexum was significantly higher in areas with experimental increased host density, whereas variation in P. relictum infection was mainly attributed to age, sex and reproduction. Second, great tit antioxidant responses – total and oxidizied glutathione - showed age- , sex- and Plasmodium species-specific patterns between infected and uninfected individuals, but reactive oxygen metabolites (ROM) showed only a weak explanatory power for patterns of P. relictum infection. Instead ROM significantly increased with Plasmodium parasitaemia. CONCLUSIONS: These results identify some key factors that influence Plasmodium infection in wild birds, and provide a potential explanation for the underlying physiological basis of recently documented negative effects of chronic avian malaria on survival and reproductive success. BioMed Central 2013-04-08 /pmc/articles/PMC3639228/ /pubmed/23565726 http://dx.doi.org/10.1186/1472-6785-13-15 Text en Copyright © 2013 Isaksson et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Isaksson, Caroline Sepil, Irem Baramidze, Vladimer Sheldon, Ben C Explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life-history and oxidative stress |
title | Explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life-history and oxidative stress |
title_full | Explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life-history and oxidative stress |
title_fullStr | Explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life-history and oxidative stress |
title_full_unstemmed | Explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life-history and oxidative stress |
title_short | Explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life-history and oxidative stress |
title_sort | explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life-history and oxidative stress |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639228/ https://www.ncbi.nlm.nih.gov/pubmed/23565726 http://dx.doi.org/10.1186/1472-6785-13-15 |
work_keys_str_mv | AT isakssoncaroline explainingvarianceofavianmalariainfectioninthewildtheimportanceofhostdensityhabitatindividuallifehistoryandoxidativestress AT sepilirem explainingvarianceofavianmalariainfectioninthewildtheimportanceofhostdensityhabitatindividuallifehistoryandoxidativestress AT baramidzevladimer explainingvarianceofavianmalariainfectioninthewildtheimportanceofhostdensityhabitatindividuallifehistoryandoxidativestress AT sheldonbenc explainingvarianceofavianmalariainfectioninthewildtheimportanceofhostdensityhabitatindividuallifehistoryandoxidativestress |