Cargando…
QSAR with experimental and predictive distributions: an information theoretic approach for assessing model quality
We propose that quantitative structure–activity relationship (QSAR) predictions should be explicitly represented as predictive (probability) distributions. If both predictions and experimental measurements are treated as probability distributions, the quality of a set of predictive distributions out...
Autores principales: | Wood, David J., Carlsson, Lars, Eklund, Martin, Norinder, Ulf, Stålring, Jonna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639359/ https://www.ncbi.nlm.nih.gov/pubmed/23504478 http://dx.doi.org/10.1007/s10822-013-9639-5 |
Ejemplares similares
-
AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment
por: Stålring, Jonna C, et al.
Publicado: (2011) -
QSAR Models for Predicting Five Levels of Cellular Accumulation of Lysosomotropic Macrocycles
por: Norinder, Ulf, et al.
Publicado: (2019) -
QSAR DataBank - an approach for the digital organization and archiving of QSAR model information
por: Ruusmann, Villu, et al.
Publicado: (2014) -
Improvement of quantitative structure–activity relationship (QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR International Challenge Project
por: Honma, Masamitsu, et al.
Publicado: (2019) -
Information-Theoretic Method for Assessing the Quality of Translations
por: Ryabko, Boris, et al.
Publicado: (2022)