Cargando…
Multiple Suboptimal Solutions for Prediction Rules in Gene Expression Data
This paper discusses mathematical and statistical aspects in analysis methods applied to microarray gene expressions. We focus on pattern recognition to extract informative features embedded in the data for prediction of phenotypes. It has been pointed out that there are severely difficult problems...
Autores principales: | Komori, Osamu, Pritchard, Mari, Eguchi, Shinto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639638/ https://www.ncbi.nlm.nih.gov/pubmed/23662163 http://dx.doi.org/10.1155/2013/798189 |
Ejemplares similares
-
Reproducible detection of disease-associated markers from gene expression data
por: Omae, Katsuhiro, et al.
Publicado: (2016) -
Statistical methods for imbalanced data in ecological and biological studies
por: Komori, Osamu, et al.
Publicado: (2019) -
A Unified Formulation of k-Means, Fuzzy c-Means and Gaussian Mixture Model by the Kolmogorov–Nagumo Average
por: Komori, Osamu, et al.
Publicado: (2021) -
A boosting method for maximizing the partial area under the ROC curve
por: Komori, Osamu, et al.
Publicado: (2010) -
Quasi-linear score for capturing heterogeneous structure in biomarkers
por: Omae, Katsuhiro, et al.
Publicado: (2017)