Cargando…

Using a Nonparametric Multilevel Latent Markov Model to Evaluate Diagnostics for Trachoma

In disease control or elimination programs, diagnostics are essential for assessing the impact of interventions, refining treatment strategies, and minimizing the waste of scarce resources. Although high-performance tests are desirable, increased accuracy is frequently accompanied by a requirement f...

Descripción completa

Detalles Bibliográficos
Autores principales: Koukounari, Artemis, Moustaki, Irini, Grassly, Nicholas C., Blake, Isobel M., Basáñez, María-Gloria, Gambhir, Manoj, Mabey, David C. W., Bailey, Robin L., Burton, Matthew J., Solomon, Anthony W., Donnelly, Christl A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639724/
https://www.ncbi.nlm.nih.gov/pubmed/23548755
http://dx.doi.org/10.1093/aje/kws345
_version_ 1782475987151224832
author Koukounari, Artemis
Moustaki, Irini
Grassly, Nicholas C.
Blake, Isobel M.
Basáñez, María-Gloria
Gambhir, Manoj
Mabey, David C. W.
Bailey, Robin L.
Burton, Matthew J.
Solomon, Anthony W.
Donnelly, Christl A.
author_facet Koukounari, Artemis
Moustaki, Irini
Grassly, Nicholas C.
Blake, Isobel M.
Basáñez, María-Gloria
Gambhir, Manoj
Mabey, David C. W.
Bailey, Robin L.
Burton, Matthew J.
Solomon, Anthony W.
Donnelly, Christl A.
author_sort Koukounari, Artemis
collection PubMed
description In disease control or elimination programs, diagnostics are essential for assessing the impact of interventions, refining treatment strategies, and minimizing the waste of scarce resources. Although high-performance tests are desirable, increased accuracy is frequently accompanied by a requirement for more elaborate infrastructure, which is often not feasible in the developing world. These challenges are pertinent to mapping, impact monitoring, and surveillance in trachoma elimination programs. To help inform rational design of diagnostics for trachoma elimination, we outline a nonparametric multilevel latent Markov modeling approach and apply it to 2 longitudinal cohort studies of trachoma-endemic communities in Tanzania (2000–2002) and The Gambia (2001–2002) to provide simultaneous inferences about the true population prevalence of Chlamydia trachomatis infection and disease and the sensitivity, specificity, and predictive values of 3 diagnostic tests for C. trachomatis infection. Estimates were obtained by using data collected before and after mass azithromycin administration. Such estimates are particularly important for trachoma because of the absence of a true “gold standard” diagnostic test for C. trachomatis. Estimated transition probabilities provide useful insights into key epidemiologic questions about the persistence of disease and the clearance of infection as well as the required frequency of surveillance in the postelimination setting.
format Online
Article
Text
id pubmed-3639724
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-36397242013-06-26 Using a Nonparametric Multilevel Latent Markov Model to Evaluate Diagnostics for Trachoma Koukounari, Artemis Moustaki, Irini Grassly, Nicholas C. Blake, Isobel M. Basáñez, María-Gloria Gambhir, Manoj Mabey, David C. W. Bailey, Robin L. Burton, Matthew J. Solomon, Anthony W. Donnelly, Christl A. Am J Epidemiol Practice of Epidemiology In disease control or elimination programs, diagnostics are essential for assessing the impact of interventions, refining treatment strategies, and minimizing the waste of scarce resources. Although high-performance tests are desirable, increased accuracy is frequently accompanied by a requirement for more elaborate infrastructure, which is often not feasible in the developing world. These challenges are pertinent to mapping, impact monitoring, and surveillance in trachoma elimination programs. To help inform rational design of diagnostics for trachoma elimination, we outline a nonparametric multilevel latent Markov modeling approach and apply it to 2 longitudinal cohort studies of trachoma-endemic communities in Tanzania (2000–2002) and The Gambia (2001–2002) to provide simultaneous inferences about the true population prevalence of Chlamydia trachomatis infection and disease and the sensitivity, specificity, and predictive values of 3 diagnostic tests for C. trachomatis infection. Estimates were obtained by using data collected before and after mass azithromycin administration. Such estimates are particularly important for trachoma because of the absence of a true “gold standard” diagnostic test for C. trachomatis. Estimated transition probabilities provide useful insights into key epidemiologic questions about the persistence of disease and the clearance of infection as well as the required frequency of surveillance in the postelimination setting. Oxford University Press 2013-05-01 2013-04-01 /pmc/articles/PMC3639724/ /pubmed/23548755 http://dx.doi.org/10.1093/aje/kws345 Text en © The Author 2013. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Practice of Epidemiology
Koukounari, Artemis
Moustaki, Irini
Grassly, Nicholas C.
Blake, Isobel M.
Basáñez, María-Gloria
Gambhir, Manoj
Mabey, David C. W.
Bailey, Robin L.
Burton, Matthew J.
Solomon, Anthony W.
Donnelly, Christl A.
Using a Nonparametric Multilevel Latent Markov Model to Evaluate Diagnostics for Trachoma
title Using a Nonparametric Multilevel Latent Markov Model to Evaluate Diagnostics for Trachoma
title_full Using a Nonparametric Multilevel Latent Markov Model to Evaluate Diagnostics for Trachoma
title_fullStr Using a Nonparametric Multilevel Latent Markov Model to Evaluate Diagnostics for Trachoma
title_full_unstemmed Using a Nonparametric Multilevel Latent Markov Model to Evaluate Diagnostics for Trachoma
title_short Using a Nonparametric Multilevel Latent Markov Model to Evaluate Diagnostics for Trachoma
title_sort using a nonparametric multilevel latent markov model to evaluate diagnostics for trachoma
topic Practice of Epidemiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639724/
https://www.ncbi.nlm.nih.gov/pubmed/23548755
http://dx.doi.org/10.1093/aje/kws345
work_keys_str_mv AT koukounariartemis usinganonparametricmultilevellatentmarkovmodeltoevaluatediagnosticsfortrachoma
AT moustakiirini usinganonparametricmultilevellatentmarkovmodeltoevaluatediagnosticsfortrachoma
AT grasslynicholasc usinganonparametricmultilevellatentmarkovmodeltoevaluatediagnosticsfortrachoma
AT blakeisobelm usinganonparametricmultilevellatentmarkovmodeltoevaluatediagnosticsfortrachoma
AT basanezmariagloria usinganonparametricmultilevellatentmarkovmodeltoevaluatediagnosticsfortrachoma
AT gambhirmanoj usinganonparametricmultilevellatentmarkovmodeltoevaluatediagnosticsfortrachoma
AT mabeydavidcw usinganonparametricmultilevellatentmarkovmodeltoevaluatediagnosticsfortrachoma
AT baileyrobinl usinganonparametricmultilevellatentmarkovmodeltoevaluatediagnosticsfortrachoma
AT burtonmatthewj usinganonparametricmultilevellatentmarkovmodeltoevaluatediagnosticsfortrachoma
AT solomonanthonyw usinganonparametricmultilevellatentmarkovmodeltoevaluatediagnosticsfortrachoma
AT donnellychristla usinganonparametricmultilevellatentmarkovmodeltoevaluatediagnosticsfortrachoma