Cargando…
Genome-wide detection of copy number variations using high-density SNP genotyping platforms in Holsteins
BACKGROUND: Copy number variations (CNVs) are widespread in the human or animal genome and are a significant source of genetic variation, which has been demonstrated to play an important role in phenotypic diversity. Advances in technology have allowed for identification of a large number of CNVs in...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639935/ https://www.ncbi.nlm.nih.gov/pubmed/23442346 http://dx.doi.org/10.1186/1471-2164-14-131 |
_version_ | 1782476022021619712 |
---|---|
author | Jiang, Li Jiang, Jicai Yang, Jie Liu, Xuan Wang, Jiying Wang, Haifei Ding, Xiangdong Liu, Jianfeng Zhang, Qin |
author_facet | Jiang, Li Jiang, Jicai Yang, Jie Liu, Xuan Wang, Jiying Wang, Haifei Ding, Xiangdong Liu, Jianfeng Zhang, Qin |
author_sort | Jiang, Li |
collection | PubMed |
description | BACKGROUND: Copy number variations (CNVs) are widespread in the human or animal genome and are a significant source of genetic variation, which has been demonstrated to play an important role in phenotypic diversity. Advances in technology have allowed for identification of a large number of CNVs in cattle. Comprehensive explore novel CNVs in the bovine genome would provide valuable information for functional analyses of genome structural variation and facilitating follow-up association studies between complex traits and genetic variants. RESULTS: In this study, we performed a genome-wide CNV detection based on high-density SNP genotyping data of 96 Chinese Holstein cattle. A total of 367 CNV regions (CNVRs) across the genome were identified, which cover 42.74Mb of the cattle genome and correspond to 1.61% of the genome sequence. The length of the CNVRs on autosomes range from 10.76 to 2,806.42 Kb with an average of 96.23 Kb. 218 out of these CNVRs contain 610 annotated genes, which possess a wide spectrum of molecular functions. To confirm these findings, quantitative PCR (qPCR) was performed for 17 CNVRs and 13(76.5%) of them were successfully validated. CONCLUSIONS: Our study demonstrates the high density SNP array can significantly improve the accuracy and sensitivity of CNV calling. Integration of different platforms can enhance the detection of genomic structure variants. Our results provide a significant replenishment for the high resolution map of copy number variation in the bovine genome and valuable information for investigation of genomic structural variation underlying traits of interest in cattle. |
format | Online Article Text |
id | pubmed-3639935 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36399352013-05-01 Genome-wide detection of copy number variations using high-density SNP genotyping platforms in Holsteins Jiang, Li Jiang, Jicai Yang, Jie Liu, Xuan Wang, Jiying Wang, Haifei Ding, Xiangdong Liu, Jianfeng Zhang, Qin BMC Genomics Research Article BACKGROUND: Copy number variations (CNVs) are widespread in the human or animal genome and are a significant source of genetic variation, which has been demonstrated to play an important role in phenotypic diversity. Advances in technology have allowed for identification of a large number of CNVs in cattle. Comprehensive explore novel CNVs in the bovine genome would provide valuable information for functional analyses of genome structural variation and facilitating follow-up association studies between complex traits and genetic variants. RESULTS: In this study, we performed a genome-wide CNV detection based on high-density SNP genotyping data of 96 Chinese Holstein cattle. A total of 367 CNV regions (CNVRs) across the genome were identified, which cover 42.74Mb of the cattle genome and correspond to 1.61% of the genome sequence. The length of the CNVRs on autosomes range from 10.76 to 2,806.42 Kb with an average of 96.23 Kb. 218 out of these CNVRs contain 610 annotated genes, which possess a wide spectrum of molecular functions. To confirm these findings, quantitative PCR (qPCR) was performed for 17 CNVRs and 13(76.5%) of them were successfully validated. CONCLUSIONS: Our study demonstrates the high density SNP array can significantly improve the accuracy and sensitivity of CNV calling. Integration of different platforms can enhance the detection of genomic structure variants. Our results provide a significant replenishment for the high resolution map of copy number variation in the bovine genome and valuable information for investigation of genomic structural variation underlying traits of interest in cattle. BioMed Central 2013-02-27 /pmc/articles/PMC3639935/ /pubmed/23442346 http://dx.doi.org/10.1186/1471-2164-14-131 Text en Copyright © 2013 Jiang et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Jiang, Li Jiang, Jicai Yang, Jie Liu, Xuan Wang, Jiying Wang, Haifei Ding, Xiangdong Liu, Jianfeng Zhang, Qin Genome-wide detection of copy number variations using high-density SNP genotyping platforms in Holsteins |
title | Genome-wide detection of copy number variations using high-density SNP genotyping platforms in Holsteins |
title_full | Genome-wide detection of copy number variations using high-density SNP genotyping platforms in Holsteins |
title_fullStr | Genome-wide detection of copy number variations using high-density SNP genotyping platforms in Holsteins |
title_full_unstemmed | Genome-wide detection of copy number variations using high-density SNP genotyping platforms in Holsteins |
title_short | Genome-wide detection of copy number variations using high-density SNP genotyping platforms in Holsteins |
title_sort | genome-wide detection of copy number variations using high-density snp genotyping platforms in holsteins |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639935/ https://www.ncbi.nlm.nih.gov/pubmed/23442346 http://dx.doi.org/10.1186/1471-2164-14-131 |
work_keys_str_mv | AT jiangli genomewidedetectionofcopynumbervariationsusinghighdensitysnpgenotypingplatformsinholsteins AT jiangjicai genomewidedetectionofcopynumbervariationsusinghighdensitysnpgenotypingplatformsinholsteins AT yangjie genomewidedetectionofcopynumbervariationsusinghighdensitysnpgenotypingplatformsinholsteins AT liuxuan genomewidedetectionofcopynumbervariationsusinghighdensitysnpgenotypingplatformsinholsteins AT wangjiying genomewidedetectionofcopynumbervariationsusinghighdensitysnpgenotypingplatformsinholsteins AT wanghaifei genomewidedetectionofcopynumbervariationsusinghighdensitysnpgenotypingplatformsinholsteins AT dingxiangdong genomewidedetectionofcopynumbervariationsusinghighdensitysnpgenotypingplatformsinholsteins AT liujianfeng genomewidedetectionofcopynumbervariationsusinghighdensitysnpgenotypingplatformsinholsteins AT zhangqin genomewidedetectionofcopynumbervariationsusinghighdensitysnpgenotypingplatformsinholsteins |