Cargando…
Cooperation and the Fate of Microbial Societies
Microorganisms have been cooperating with each other for billions of years: by sharing resources, communicating with each other, and joining together to form biofilms and other large structures. These cooperative behaviors benefit the colony as a whole; however, they may be costly to the individuals...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640085/ https://www.ncbi.nlm.nih.gov/pubmed/23637573 http://dx.doi.org/10.1371/journal.pbio.1001549 |
_version_ | 1782267886171062272 |
---|---|
author | Allen, Benjamin Nowak, Martin A. |
author_facet | Allen, Benjamin Nowak, Martin A. |
author_sort | Allen, Benjamin |
collection | PubMed |
description | Microorganisms have been cooperating with each other for billions of years: by sharing resources, communicating with each other, and joining together to form biofilms and other large structures. These cooperative behaviors benefit the colony as a whole; however, they may be costly to the individuals performing them. This raises the question of how such cooperation can arise from natural selection. Mathematical modeling is one important avenue for exploring this question. Evolutionary experiments are another, providing us with an opportunity to see evolutionary dynamics in action and allowing us to test predictions arising from mathematical models. A new study in this issue of PLOS Biology investigates the evolution of a cooperative resource-sharing behavior in yeast. Examining the competition between cooperating and “cheating” strains of yeast, the authors find that, depending on the initial mix of strains, this yeast society either evolves toward a stable coexistence or collapses for lack of cooperation. Using a simple mathematical model, they show how these dynamics arise from eco-evolutionary feedback, where changes in the frequencies of strains are coupled with changes in population size. This study and others illustrate the combined power of modeling and experiment to elucidate the origins of cooperation and other fundamental questions in evolutionary biology. |
format | Online Article Text |
id | pubmed-3640085 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36400852013-05-01 Cooperation and the Fate of Microbial Societies Allen, Benjamin Nowak, Martin A. PLoS Biol Primer Microorganisms have been cooperating with each other for billions of years: by sharing resources, communicating with each other, and joining together to form biofilms and other large structures. These cooperative behaviors benefit the colony as a whole; however, they may be costly to the individuals performing them. This raises the question of how such cooperation can arise from natural selection. Mathematical modeling is one important avenue for exploring this question. Evolutionary experiments are another, providing us with an opportunity to see evolutionary dynamics in action and allowing us to test predictions arising from mathematical models. A new study in this issue of PLOS Biology investigates the evolution of a cooperative resource-sharing behavior in yeast. Examining the competition between cooperating and “cheating” strains of yeast, the authors find that, depending on the initial mix of strains, this yeast society either evolves toward a stable coexistence or collapses for lack of cooperation. Using a simple mathematical model, they show how these dynamics arise from eco-evolutionary feedback, where changes in the frequencies of strains are coupled with changes in population size. This study and others illustrate the combined power of modeling and experiment to elucidate the origins of cooperation and other fundamental questions in evolutionary biology. Public Library of Science 2013-04-30 /pmc/articles/PMC3640085/ /pubmed/23637573 http://dx.doi.org/10.1371/journal.pbio.1001549 Text en © 2013 Allen and Nowak http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Primer Allen, Benjamin Nowak, Martin A. Cooperation and the Fate of Microbial Societies |
title | Cooperation and the Fate of Microbial Societies |
title_full | Cooperation and the Fate of Microbial Societies |
title_fullStr | Cooperation and the Fate of Microbial Societies |
title_full_unstemmed | Cooperation and the Fate of Microbial Societies |
title_short | Cooperation and the Fate of Microbial Societies |
title_sort | cooperation and the fate of microbial societies |
topic | Primer |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640085/ https://www.ncbi.nlm.nih.gov/pubmed/23637573 http://dx.doi.org/10.1371/journal.pbio.1001549 |
work_keys_str_mv | AT allenbenjamin cooperationandthefateofmicrobialsocieties AT nowakmartina cooperationandthefateofmicrobialsocieties |