Cargando…
Prediction and Validation of Gene-Disease Associations Using Methods Inspired by Social Network Analyses
Correctly identifying associations of genes with diseases has long been a goal in biology. With the emergence of large-scale gene-phenotype association datasets in biology, we can leverage statistical and machine learning methods to help us achieve this goal. In this paper, we present two methods fo...
Autores principales: | Singh-Blom, U. Martin, Natarajan, Nagarajan, Tewari, Ambuj, Woods, John O., Dhillon, Inderjit S., Marcotte, Edward M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641094/ https://www.ncbi.nlm.nih.gov/pubmed/23650495 http://dx.doi.org/10.1371/journal.pone.0058977 |
Ejemplares similares
-
Correction: Prediction and Validation of Gene-Disease Associations Using Methods Inspired by Social Network Analyses
por: Singh-Blom, U. Martin, et al.
Publicado: (2013) -
Inductive matrix completion for predicting gene–disease associations
por: Natarajan, Nagarajan, et al.
Publicado: (2014) -
Prediction of gene–phenotype associations in humans, mice, and plants using phenologs
por: Woods, John O, et al.
Publicado: (2013) -
mHealth Systems Need a Privacy-by-Design Approach: Commentary on “Federated Machine Learning, Privacy-Enhancing Technologies, and Data Protection Laws in Medical Research: Scoping Review”
por: Tewari, Ambuj
Publicado: (2023) -
Exploring the Relationship Between Privacy and Utility in Mobile Health: Algorithm Development and Validation via Simulations of Federated Learning, Differential Privacy, and External Attacks
por: Shen, Alexander, et al.
Publicado: (2023)