Cargando…

Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi

Pathogens express ligands for several TLRs that may play a role in the induction or control of the inflammatory response during infection. Concerning Trypanosoma cruzi, the agent of Chagas disease, we have previously characterized glycosylphosphatidylinositol (GPI) anchored mucin-like glycoproteins...

Descripción completa

Detalles Bibliográficos
Autores principales: Gravina, Humberto D., Antonelli, Lis, Gazzinelli, Ricardo T., Ropert, Catherine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641106/
https://www.ncbi.nlm.nih.gov/pubmed/23650544
http://dx.doi.org/10.1371/journal.pone.0063100
_version_ 1782267982535196672
author Gravina, Humberto D.
Antonelli, Lis
Gazzinelli, Ricardo T.
Ropert, Catherine
author_facet Gravina, Humberto D.
Antonelli, Lis
Gazzinelli, Ricardo T.
Ropert, Catherine
author_sort Gravina, Humberto D.
collection PubMed
description Pathogens express ligands for several TLRs that may play a role in the induction or control of the inflammatory response during infection. Concerning Trypanosoma cruzi, the agent of Chagas disease, we have previously characterized glycosylphosphatidylinositol (GPI) anchored mucin-like glycoproteins (tGPI-mucin) and unmethylated CpG DNA sequences as TLR2 and TLR9 agonists, respectively. Here we sought to determine how these TLRs may modulate the inflammatory response in the following cell populations: F4/80(+)CD11b(+) (macrophages), F4/80(low)CD11b(+) (monocytes) and MHCII(+)CD11c(high) (dendritic cells). For this purpose, TLR2(−/−) and TLR9(−/−) mice were infected with Y strain of T. cruzi and different immunological parameters were evaluated. According to our previous data, a crucial role of TLR9 was evidenced in the establishment of Th1 response, whereas TLR2 appeared to act as immunoregulator in the early stage of infection. More precisely, we demonstrated here that TLR2 was mainly used by F4/80(+)CD11b(+) cells for the production of TNF-α. In the absence of TLR2, an increased production of IL-12/IL-23p40 and IFN-γ was noted suggesting that TLR2 negatively controls the Th1 response. In contrast, TLR9 was committed to IL-12/IL-23p40 production by MHCII(+)CD11c(high) cells that constitute the main source of IL-12/IL-23p40 during infection. Importantly, a down-regulation of TLR9 response was observed in F4/80(+)CD11b(+) and F4/80(low)CD11b(+) populations that correlated with the decreased TLR9 expression level in these cells. Interestingly, these cells recovered their capacity to respond to TLR9 agonist when MHCII(+)CD11c(high) cells were impeded from producing IL-12/IL-23p40, thereby indicating possible cross-talk between these populations. The differential use of TLR2 and TLR9 by the immune cells during the acute phase of the infection explains why TLR9- but not TLR2-deficient mice are susceptible to T. cruzi infection.
format Online
Article
Text
id pubmed-3641106
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-36411062013-05-06 Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi Gravina, Humberto D. Antonelli, Lis Gazzinelli, Ricardo T. Ropert, Catherine PLoS One Research Article Pathogens express ligands for several TLRs that may play a role in the induction or control of the inflammatory response during infection. Concerning Trypanosoma cruzi, the agent of Chagas disease, we have previously characterized glycosylphosphatidylinositol (GPI) anchored mucin-like glycoproteins (tGPI-mucin) and unmethylated CpG DNA sequences as TLR2 and TLR9 agonists, respectively. Here we sought to determine how these TLRs may modulate the inflammatory response in the following cell populations: F4/80(+)CD11b(+) (macrophages), F4/80(low)CD11b(+) (monocytes) and MHCII(+)CD11c(high) (dendritic cells). For this purpose, TLR2(−/−) and TLR9(−/−) mice were infected with Y strain of T. cruzi and different immunological parameters were evaluated. According to our previous data, a crucial role of TLR9 was evidenced in the establishment of Th1 response, whereas TLR2 appeared to act as immunoregulator in the early stage of infection. More precisely, we demonstrated here that TLR2 was mainly used by F4/80(+)CD11b(+) cells for the production of TNF-α. In the absence of TLR2, an increased production of IL-12/IL-23p40 and IFN-γ was noted suggesting that TLR2 negatively controls the Th1 response. In contrast, TLR9 was committed to IL-12/IL-23p40 production by MHCII(+)CD11c(high) cells that constitute the main source of IL-12/IL-23p40 during infection. Importantly, a down-regulation of TLR9 response was observed in F4/80(+)CD11b(+) and F4/80(low)CD11b(+) populations that correlated with the decreased TLR9 expression level in these cells. Interestingly, these cells recovered their capacity to respond to TLR9 agonist when MHCII(+)CD11c(high) cells were impeded from producing IL-12/IL-23p40, thereby indicating possible cross-talk between these populations. The differential use of TLR2 and TLR9 by the immune cells during the acute phase of the infection explains why TLR9- but not TLR2-deficient mice are susceptible to T. cruzi infection. Public Library of Science 2013-05-01 /pmc/articles/PMC3641106/ /pubmed/23650544 http://dx.doi.org/10.1371/journal.pone.0063100 Text en © 2013 Gravina et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Gravina, Humberto D.
Antonelli, Lis
Gazzinelli, Ricardo T.
Ropert, Catherine
Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi
title Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi
title_full Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi
title_fullStr Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi
title_full_unstemmed Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi
title_short Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi
title_sort differential use of tlr2 and tlr9 in the regulation of immune responses during the infection with trypanosoma cruzi
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641106/
https://www.ncbi.nlm.nih.gov/pubmed/23650544
http://dx.doi.org/10.1371/journal.pone.0063100
work_keys_str_mv AT gravinahumbertod differentialuseoftlr2andtlr9intheregulationofimmuneresponsesduringtheinfectionwithtrypanosomacruzi
AT antonellilis differentialuseoftlr2andtlr9intheregulationofimmuneresponsesduringtheinfectionwithtrypanosomacruzi
AT gazzinelliricardot differentialuseoftlr2andtlr9intheregulationofimmuneresponsesduringtheinfectionwithtrypanosomacruzi
AT ropertcatherine differentialuseoftlr2andtlr9intheregulationofimmuneresponsesduringtheinfectionwithtrypanosomacruzi