Cargando…
Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi
Pathogens express ligands for several TLRs that may play a role in the induction or control of the inflammatory response during infection. Concerning Trypanosoma cruzi, the agent of Chagas disease, we have previously characterized glycosylphosphatidylinositol (GPI) anchored mucin-like glycoproteins...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641106/ https://www.ncbi.nlm.nih.gov/pubmed/23650544 http://dx.doi.org/10.1371/journal.pone.0063100 |
_version_ | 1782267982535196672 |
---|---|
author | Gravina, Humberto D. Antonelli, Lis Gazzinelli, Ricardo T. Ropert, Catherine |
author_facet | Gravina, Humberto D. Antonelli, Lis Gazzinelli, Ricardo T. Ropert, Catherine |
author_sort | Gravina, Humberto D. |
collection | PubMed |
description | Pathogens express ligands for several TLRs that may play a role in the induction or control of the inflammatory response during infection. Concerning Trypanosoma cruzi, the agent of Chagas disease, we have previously characterized glycosylphosphatidylinositol (GPI) anchored mucin-like glycoproteins (tGPI-mucin) and unmethylated CpG DNA sequences as TLR2 and TLR9 agonists, respectively. Here we sought to determine how these TLRs may modulate the inflammatory response in the following cell populations: F4/80(+)CD11b(+) (macrophages), F4/80(low)CD11b(+) (monocytes) and MHCII(+)CD11c(high) (dendritic cells). For this purpose, TLR2(−/−) and TLR9(−/−) mice were infected with Y strain of T. cruzi and different immunological parameters were evaluated. According to our previous data, a crucial role of TLR9 was evidenced in the establishment of Th1 response, whereas TLR2 appeared to act as immunoregulator in the early stage of infection. More precisely, we demonstrated here that TLR2 was mainly used by F4/80(+)CD11b(+) cells for the production of TNF-α. In the absence of TLR2, an increased production of IL-12/IL-23p40 and IFN-γ was noted suggesting that TLR2 negatively controls the Th1 response. In contrast, TLR9 was committed to IL-12/IL-23p40 production by MHCII(+)CD11c(high) cells that constitute the main source of IL-12/IL-23p40 during infection. Importantly, a down-regulation of TLR9 response was observed in F4/80(+)CD11b(+) and F4/80(low)CD11b(+) populations that correlated with the decreased TLR9 expression level in these cells. Interestingly, these cells recovered their capacity to respond to TLR9 agonist when MHCII(+)CD11c(high) cells were impeded from producing IL-12/IL-23p40, thereby indicating possible cross-talk between these populations. The differential use of TLR2 and TLR9 by the immune cells during the acute phase of the infection explains why TLR9- but not TLR2-deficient mice are susceptible to T. cruzi infection. |
format | Online Article Text |
id | pubmed-3641106 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36411062013-05-06 Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi Gravina, Humberto D. Antonelli, Lis Gazzinelli, Ricardo T. Ropert, Catherine PLoS One Research Article Pathogens express ligands for several TLRs that may play a role in the induction or control of the inflammatory response during infection. Concerning Trypanosoma cruzi, the agent of Chagas disease, we have previously characterized glycosylphosphatidylinositol (GPI) anchored mucin-like glycoproteins (tGPI-mucin) and unmethylated CpG DNA sequences as TLR2 and TLR9 agonists, respectively. Here we sought to determine how these TLRs may modulate the inflammatory response in the following cell populations: F4/80(+)CD11b(+) (macrophages), F4/80(low)CD11b(+) (monocytes) and MHCII(+)CD11c(high) (dendritic cells). For this purpose, TLR2(−/−) and TLR9(−/−) mice were infected with Y strain of T. cruzi and different immunological parameters were evaluated. According to our previous data, a crucial role of TLR9 was evidenced in the establishment of Th1 response, whereas TLR2 appeared to act as immunoregulator in the early stage of infection. More precisely, we demonstrated here that TLR2 was mainly used by F4/80(+)CD11b(+) cells for the production of TNF-α. In the absence of TLR2, an increased production of IL-12/IL-23p40 and IFN-γ was noted suggesting that TLR2 negatively controls the Th1 response. In contrast, TLR9 was committed to IL-12/IL-23p40 production by MHCII(+)CD11c(high) cells that constitute the main source of IL-12/IL-23p40 during infection. Importantly, a down-regulation of TLR9 response was observed in F4/80(+)CD11b(+) and F4/80(low)CD11b(+) populations that correlated with the decreased TLR9 expression level in these cells. Interestingly, these cells recovered their capacity to respond to TLR9 agonist when MHCII(+)CD11c(high) cells were impeded from producing IL-12/IL-23p40, thereby indicating possible cross-talk between these populations. The differential use of TLR2 and TLR9 by the immune cells during the acute phase of the infection explains why TLR9- but not TLR2-deficient mice are susceptible to T. cruzi infection. Public Library of Science 2013-05-01 /pmc/articles/PMC3641106/ /pubmed/23650544 http://dx.doi.org/10.1371/journal.pone.0063100 Text en © 2013 Gravina et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Gravina, Humberto D. Antonelli, Lis Gazzinelli, Ricardo T. Ropert, Catherine Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi |
title | Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi
|
title_full | Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi
|
title_fullStr | Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi
|
title_full_unstemmed | Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi
|
title_short | Differential Use of TLR2 and TLR9 in the Regulation of Immune Responses during the Infection with Trypanosoma cruzi
|
title_sort | differential use of tlr2 and tlr9 in the regulation of immune responses during the infection with trypanosoma cruzi |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641106/ https://www.ncbi.nlm.nih.gov/pubmed/23650544 http://dx.doi.org/10.1371/journal.pone.0063100 |
work_keys_str_mv | AT gravinahumbertod differentialuseoftlr2andtlr9intheregulationofimmuneresponsesduringtheinfectionwithtrypanosomacruzi AT antonellilis differentialuseoftlr2andtlr9intheregulationofimmuneresponsesduringtheinfectionwithtrypanosomacruzi AT gazzinelliricardot differentialuseoftlr2andtlr9intheregulationofimmuneresponsesduringtheinfectionwithtrypanosomacruzi AT ropertcatherine differentialuseoftlr2andtlr9intheregulationofimmuneresponsesduringtheinfectionwithtrypanosomacruzi |