Cargando…

Spatially-resolved rotational microrheology with an optically-trapped sphere

We have developed a microrheometer, based on optical tweezers, in which hydrodynamic coupling between the probe and fluid boundaries is dramatically reduced relative to existing microrheometers. Rotational Brownian motion of a birefringent microsphere within an angular optical trap is observed by me...

Descripción completa

Detalles Bibliográficos
Autores principales: Bennett, James S., Gibson, Lachlan J., Kelly, Rory M., Brousse, Emmanuel, Baudisch, Bastian, Preece, Daryl, Nieminen, Timo A., Nicholson, Timothy, Heckenberg, Norman R., Rubinsztein-Dunlop, Halina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641521/
http://dx.doi.org/10.1038/srep01759
Descripción
Sumario:We have developed a microrheometer, based on optical tweezers, in which hydrodynamic coupling between the probe and fluid boundaries is dramatically reduced relative to existing microrheometers. Rotational Brownian motion of a birefringent microsphere within an angular optical trap is observed by measuring the polarisation shifts of transmitted light. Data gathered in this manner, in the strongly viscoelastic fluid Celluvisc, quantitatively agree with the results of conventional (bulk) rheometry. Our technique will significantly reduce the smallest sample volumes which may be reliably probed, further extending the study of rare, difficult to obtain or highly nonhomogeneous fluids.