Cargando…

Quantitative proteomics comparison of arachnoid cyst fluid and cerebrospinal fluid collected perioperatively from arachnoid cyst patients

BACKGROUND: There is little knowledge concerning the content and the mechanisms of filling of arachnoid cysts. The aim of this study was to compare the protein content of arachnoid cysts and cerebrospinal fluid by quantitative proteomics to increase the understanding of arachnoid cysts. METHODS: Ara...

Descripción completa

Detalles Bibliográficos
Autores principales: Berle, Magnus, Kroksveen, Ann Cathrine, Garberg, Hilde, Aarhus, Mads, Haaland, Øystein Ariansen, Wester, Knut, Ulvik, Rune Johan, Helland, Christian, Berven, Frode
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641952/
https://www.ncbi.nlm.nih.gov/pubmed/23628075
http://dx.doi.org/10.1186/2045-8118-10-17
_version_ 1782268068084318208
author Berle, Magnus
Kroksveen, Ann Cathrine
Garberg, Hilde
Aarhus, Mads
Haaland, Øystein Ariansen
Wester, Knut
Ulvik, Rune Johan
Helland, Christian
Berven, Frode
author_facet Berle, Magnus
Kroksveen, Ann Cathrine
Garberg, Hilde
Aarhus, Mads
Haaland, Øystein Ariansen
Wester, Knut
Ulvik, Rune Johan
Helland, Christian
Berven, Frode
author_sort Berle, Magnus
collection PubMed
description BACKGROUND: There is little knowledge concerning the content and the mechanisms of filling of arachnoid cysts. The aim of this study was to compare the protein content of arachnoid cysts and cerebrospinal fluid by quantitative proteomics to increase the understanding of arachnoid cysts. METHODS: Arachnoid cyst fluid and cerebrospinal fluid from five patients were analyzed by quantitative proteomics in two separate experiments. In a label-free experiment arachnoid cyst fluid and cerebrospinal fluid samples from individual patients were trypsin digested and analyzed by Orbitrap mass spectrometry in a label-free manner followed by data analysis using the Progenesis software. In the second proteomics experiment, a patient sample pooling strategy was followed by MARS-14 immunodepletion of high abundant proteins, trypsin digestion, iTRAQ labelling, and peptide separation by mix-phase chromatography followed by Orbitrap mass spectrometry analysis. The results from these analyzes were compared to previously published mRNA microarray data obtained from arachnoid membranes. RESULTS: We quantified 348 proteins by the label-free individual patient approach and 1425 proteins in the iTRAQ experiment using a pool from five patients of arachnoid cyst fluid and cerebrospinal fluid. This is by far the largest number of arachnoid cyst fluid proteins ever identified, and the first large-scale quantitative comparison between the protein content of arachnoid cyst fluid and cerebrospinal fluid from the same patients at the same time. Consistently in both experiment, we found 22 proteins with significantly increased abundance in arachnoid cysts compared to cerebrospinal fluid and 24 proteins with significantly decreased abundance. We did not observe any molecular weight gradient over the arachnoid cyst membrane. Of the 46 proteins we identified as differentially abundant in our study, 45 were also detected from the mRNA expression level study. None of them were previously reported as differentially expressed. We did not quantify any of the proteins corresponding to gene products from the ten genes previously reported as differentially abundant between arachnoid cysts and control arachnoid membranes. CONCLUSIONS: From our experiments, the protein content of arachnoid cyst fluid and cerebrospinal fluid appears to be similar. There were, however, proteins that were significantly differentially abundant between arachnoid cyst fluid and cerebrospinal fluid. This could reflect the possibility that these proteins are affected by the filling mechanism of arachnoid cysts or are shed from the membranes into arachnoid cyst fluid. Our results do not support the proposed filling mechanisms of oncotic pressure or valves.
format Online
Article
Text
id pubmed-3641952
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-36419522013-05-03 Quantitative proteomics comparison of arachnoid cyst fluid and cerebrospinal fluid collected perioperatively from arachnoid cyst patients Berle, Magnus Kroksveen, Ann Cathrine Garberg, Hilde Aarhus, Mads Haaland, Øystein Ariansen Wester, Knut Ulvik, Rune Johan Helland, Christian Berven, Frode Fluids Barriers CNS Research BACKGROUND: There is little knowledge concerning the content and the mechanisms of filling of arachnoid cysts. The aim of this study was to compare the protein content of arachnoid cysts and cerebrospinal fluid by quantitative proteomics to increase the understanding of arachnoid cysts. METHODS: Arachnoid cyst fluid and cerebrospinal fluid from five patients were analyzed by quantitative proteomics in two separate experiments. In a label-free experiment arachnoid cyst fluid and cerebrospinal fluid samples from individual patients were trypsin digested and analyzed by Orbitrap mass spectrometry in a label-free manner followed by data analysis using the Progenesis software. In the second proteomics experiment, a patient sample pooling strategy was followed by MARS-14 immunodepletion of high abundant proteins, trypsin digestion, iTRAQ labelling, and peptide separation by mix-phase chromatography followed by Orbitrap mass spectrometry analysis. The results from these analyzes were compared to previously published mRNA microarray data obtained from arachnoid membranes. RESULTS: We quantified 348 proteins by the label-free individual patient approach and 1425 proteins in the iTRAQ experiment using a pool from five patients of arachnoid cyst fluid and cerebrospinal fluid. This is by far the largest number of arachnoid cyst fluid proteins ever identified, and the first large-scale quantitative comparison between the protein content of arachnoid cyst fluid and cerebrospinal fluid from the same patients at the same time. Consistently in both experiment, we found 22 proteins with significantly increased abundance in arachnoid cysts compared to cerebrospinal fluid and 24 proteins with significantly decreased abundance. We did not observe any molecular weight gradient over the arachnoid cyst membrane. Of the 46 proteins we identified as differentially abundant in our study, 45 were also detected from the mRNA expression level study. None of them were previously reported as differentially expressed. We did not quantify any of the proteins corresponding to gene products from the ten genes previously reported as differentially abundant between arachnoid cysts and control arachnoid membranes. CONCLUSIONS: From our experiments, the protein content of arachnoid cyst fluid and cerebrospinal fluid appears to be similar. There were, however, proteins that were significantly differentially abundant between arachnoid cyst fluid and cerebrospinal fluid. This could reflect the possibility that these proteins are affected by the filling mechanism of arachnoid cysts or are shed from the membranes into arachnoid cyst fluid. Our results do not support the proposed filling mechanisms of oncotic pressure or valves. BioMed Central 2013-04-29 /pmc/articles/PMC3641952/ /pubmed/23628075 http://dx.doi.org/10.1186/2045-8118-10-17 Text en Copyright © 2013 Berle et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Berle, Magnus
Kroksveen, Ann Cathrine
Garberg, Hilde
Aarhus, Mads
Haaland, Øystein Ariansen
Wester, Knut
Ulvik, Rune Johan
Helland, Christian
Berven, Frode
Quantitative proteomics comparison of arachnoid cyst fluid and cerebrospinal fluid collected perioperatively from arachnoid cyst patients
title Quantitative proteomics comparison of arachnoid cyst fluid and cerebrospinal fluid collected perioperatively from arachnoid cyst patients
title_full Quantitative proteomics comparison of arachnoid cyst fluid and cerebrospinal fluid collected perioperatively from arachnoid cyst patients
title_fullStr Quantitative proteomics comparison of arachnoid cyst fluid and cerebrospinal fluid collected perioperatively from arachnoid cyst patients
title_full_unstemmed Quantitative proteomics comparison of arachnoid cyst fluid and cerebrospinal fluid collected perioperatively from arachnoid cyst patients
title_short Quantitative proteomics comparison of arachnoid cyst fluid and cerebrospinal fluid collected perioperatively from arachnoid cyst patients
title_sort quantitative proteomics comparison of arachnoid cyst fluid and cerebrospinal fluid collected perioperatively from arachnoid cyst patients
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641952/
https://www.ncbi.nlm.nih.gov/pubmed/23628075
http://dx.doi.org/10.1186/2045-8118-10-17
work_keys_str_mv AT berlemagnus quantitativeproteomicscomparisonofarachnoidcystfluidandcerebrospinalfluidcollectedperioperativelyfromarachnoidcystpatients
AT kroksveenanncathrine quantitativeproteomicscomparisonofarachnoidcystfluidandcerebrospinalfluidcollectedperioperativelyfromarachnoidcystpatients
AT garberghilde quantitativeproteomicscomparisonofarachnoidcystfluidandcerebrospinalfluidcollectedperioperativelyfromarachnoidcystpatients
AT aarhusmads quantitativeproteomicscomparisonofarachnoidcystfluidandcerebrospinalfluidcollectedperioperativelyfromarachnoidcystpatients
AT haalandøysteinariansen quantitativeproteomicscomparisonofarachnoidcystfluidandcerebrospinalfluidcollectedperioperativelyfromarachnoidcystpatients
AT westerknut quantitativeproteomicscomparisonofarachnoidcystfluidandcerebrospinalfluidcollectedperioperativelyfromarachnoidcystpatients
AT ulvikrunejohan quantitativeproteomicscomparisonofarachnoidcystfluidandcerebrospinalfluidcollectedperioperativelyfromarachnoidcystpatients
AT hellandchristian quantitativeproteomicscomparisonofarachnoidcystfluidandcerebrospinalfluidcollectedperioperativelyfromarachnoidcystpatients
AT bervenfrode quantitativeproteomicscomparisonofarachnoidcystfluidandcerebrospinalfluidcollectedperioperativelyfromarachnoidcystpatients