Cargando…

Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging

BACKGROUND: A clear understanding of the blood vessels in the eye is helpful in the diagnosis and treatment of ophthalmic diseases, such as glaucoma. Conventional techniques such as micro-CT imaging and histology are not sufficiently accurate to identify the vessels in the eye, because their diamete...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lu, Qian, Xiuqing, Zhang, Kunya, Cui, Qianqian, Zhao, Qiuyun, Liu, Zhicheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642019/
https://www.ncbi.nlm.nih.gov/pubmed/23577753
http://dx.doi.org/10.1186/1475-925X-12-30
_version_ 1782268083564445696
author Zhang, Lu
Qian, Xiuqing
Zhang, Kunya
Cui, Qianqian
Zhao, Qiuyun
Liu, Zhicheng
author_facet Zhang, Lu
Qian, Xiuqing
Zhang, Kunya
Cui, Qianqian
Zhao, Qiuyun
Liu, Zhicheng
author_sort Zhang, Lu
collection PubMed
description BACKGROUND: A clear understanding of the blood vessels in the eye is helpful in the diagnosis and treatment of ophthalmic diseases, such as glaucoma. Conventional techniques such as micro-CT imaging and histology are not sufficiently accurate to identify the vessels in the eye, because their diameter is just a few microns. The newly developed medical imaging technology, X-ray phase-contrast imaging (XPCI), is able to distinguish the structure of the vessels in the eye. In this study, XPCI was used to identify the internal structure of the blood vessels in the eye. METHODS: After injection with barium sulfate via the ear border artery, an anesthetized rabbit was killed and its eye was fixed in vitro in 10% formalin solution. We acquired images using XPCI at the Shanghai Synchrotron Radiation Facility. The datasets were converted into slices by filtered back-projection (FBP). An angiographic score was obtained as a parameter to quantify the density of the blood vessels. A three-dimensional (3D) model of the blood vessels was then established using Amira 5.2 software. RESULTS: With XPCI, blood vessels in the rabbit eye as small as 18 μm in diameter and a sixth of the long posterior ciliary artery could be clearly distinguished. In the 3D model, we obtained the level 4 branch structure of vessels in the fundus. The diameters of the arteria centralis retinae and its branches are about 200 μm, 110 μm, 95 μm, 80 μm and 40 μm. The diameters of the circulus arteriosus iridis major and its branches are about 210 μm, 70 μm and 30 μm. Analysis of vessel density using the angiographic score showed that the blood vessels had maximum density in the fundus and minimum density in the area anterior to the equator (scores 0.27 ± 0.029 and 0.16 ± 0.032, respectively). We performed quantitative angiographic analysis of the blood vessels to further investigate the density of the vessels. CONCLUSIONS: XPCI provided a feasible means to determine the structure of the blood vessels in the eye. We were able to determine the diameters and morphological characteristics of the vessels from both 2D images and the 3D model. By analyzing the images, we obtained measurements of the density distribution of the microvasculature, and this approach may provide valuable reference information prior to glaucoma filtration surgery.
format Online
Article
Text
id pubmed-3642019
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-36420192013-05-03 Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging Zhang, Lu Qian, Xiuqing Zhang, Kunya Cui, Qianqian Zhao, Qiuyun Liu, Zhicheng Biomed Eng Online Research BACKGROUND: A clear understanding of the blood vessels in the eye is helpful in the diagnosis and treatment of ophthalmic diseases, such as glaucoma. Conventional techniques such as micro-CT imaging and histology are not sufficiently accurate to identify the vessels in the eye, because their diameter is just a few microns. The newly developed medical imaging technology, X-ray phase-contrast imaging (XPCI), is able to distinguish the structure of the vessels in the eye. In this study, XPCI was used to identify the internal structure of the blood vessels in the eye. METHODS: After injection with barium sulfate via the ear border artery, an anesthetized rabbit was killed and its eye was fixed in vitro in 10% formalin solution. We acquired images using XPCI at the Shanghai Synchrotron Radiation Facility. The datasets were converted into slices by filtered back-projection (FBP). An angiographic score was obtained as a parameter to quantify the density of the blood vessels. A three-dimensional (3D) model of the blood vessels was then established using Amira 5.2 software. RESULTS: With XPCI, blood vessels in the rabbit eye as small as 18 μm in diameter and a sixth of the long posterior ciliary artery could be clearly distinguished. In the 3D model, we obtained the level 4 branch structure of vessels in the fundus. The diameters of the arteria centralis retinae and its branches are about 200 μm, 110 μm, 95 μm, 80 μm and 40 μm. The diameters of the circulus arteriosus iridis major and its branches are about 210 μm, 70 μm and 30 μm. Analysis of vessel density using the angiographic score showed that the blood vessels had maximum density in the fundus and minimum density in the area anterior to the equator (scores 0.27 ± 0.029 and 0.16 ± 0.032, respectively). We performed quantitative angiographic analysis of the blood vessels to further investigate the density of the vessels. CONCLUSIONS: XPCI provided a feasible means to determine the structure of the blood vessels in the eye. We were able to determine the diameters and morphological characteristics of the vessels from both 2D images and the 3D model. By analyzing the images, we obtained measurements of the density distribution of the microvasculature, and this approach may provide valuable reference information prior to glaucoma filtration surgery. BioMed Central 2013-04-11 /pmc/articles/PMC3642019/ /pubmed/23577753 http://dx.doi.org/10.1186/1475-925X-12-30 Text en Copyright © 2013 Zhang et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Zhang, Lu
Qian, Xiuqing
Zhang, Kunya
Cui, Qianqian
Zhao, Qiuyun
Liu, Zhicheng
Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging
title Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging
title_full Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging
title_fullStr Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging
title_full_unstemmed Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging
title_short Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging
title_sort three-dimensional reconstruction of blood vessels in the rabbit eye by x-ray phase contrast imaging
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642019/
https://www.ncbi.nlm.nih.gov/pubmed/23577753
http://dx.doi.org/10.1186/1475-925X-12-30
work_keys_str_mv AT zhanglu threedimensionalreconstructionofbloodvesselsintherabbiteyebyxrayphasecontrastimaging
AT qianxiuqing threedimensionalreconstructionofbloodvesselsintherabbiteyebyxrayphasecontrastimaging
AT zhangkunya threedimensionalreconstructionofbloodvesselsintherabbiteyebyxrayphasecontrastimaging
AT cuiqianqian threedimensionalreconstructionofbloodvesselsintherabbiteyebyxrayphasecontrastimaging
AT zhaoqiuyun threedimensionalreconstructionofbloodvesselsintherabbiteyebyxrayphasecontrastimaging
AT liuzhicheng threedimensionalreconstructionofbloodvesselsintherabbiteyebyxrayphasecontrastimaging