Cargando…
Inference of R (0) and Transmission Heterogeneity from the Size Distribution of Stuttering Chains
For many infectious disease processes such as emerging zoonoses and vaccine-preventable diseases, [Image: see text] and infections occur as self-limited stuttering transmission chains. A mechanistic understanding of transmission is essential for characterizing the risk of emerging diseases and monit...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642075/ https://www.ncbi.nlm.nih.gov/pubmed/23658504 http://dx.doi.org/10.1371/journal.pcbi.1002993 |
_version_ | 1782268095195250688 |
---|---|
author | Blumberg, Seth Lloyd-Smith, James O. |
author_facet | Blumberg, Seth Lloyd-Smith, James O. |
author_sort | Blumberg, Seth |
collection | PubMed |
description | For many infectious disease processes such as emerging zoonoses and vaccine-preventable diseases, [Image: see text] and infections occur as self-limited stuttering transmission chains. A mechanistic understanding of transmission is essential for characterizing the risk of emerging diseases and monitoring spatio-temporal dynamics. Thus methods for inferring [Image: see text] and the degree of heterogeneity in transmission from stuttering chain data have important applications in disease surveillance and management. Previous researchers have used chain size distributions to infer [Image: see text], but estimation of the degree of individual-level variation in infectiousness (as quantified by the dispersion parameter, [Image: see text]) has typically required contact tracing data. Utilizing branching process theory along with a negative binomial offspring distribution, we demonstrate how maximum likelihood estimation can be applied to chain size data to infer both [Image: see text] and the dispersion parameter that characterizes heterogeneity. While the maximum likelihood value for [Image: see text] is a simple function of the average chain size, the associated confidence intervals are dependent on the inferred degree of transmission heterogeneity. As demonstrated for monkeypox data from the Democratic Republic of Congo, this impacts when a statistically significant change in [Image: see text] is detectable. In addition, by allowing for superspreading events, inference of [Image: see text] shifts the threshold above which a transmission chain should be considered anomalously large for a given value of [Image: see text] (thus reducing the probability of false alarms about pathogen adaptation). Our analysis of monkeypox also clarifies the various ways that imperfect observation can impact inference of transmission parameters, and highlights the need to quantitatively evaluate whether observation is likely to significantly bias results. |
format | Online Article Text |
id | pubmed-3642075 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36420752013-05-08 Inference of R (0) and Transmission Heterogeneity from the Size Distribution of Stuttering Chains Blumberg, Seth Lloyd-Smith, James O. PLoS Comput Biol Research Article For many infectious disease processes such as emerging zoonoses and vaccine-preventable diseases, [Image: see text] and infections occur as self-limited stuttering transmission chains. A mechanistic understanding of transmission is essential for characterizing the risk of emerging diseases and monitoring spatio-temporal dynamics. Thus methods for inferring [Image: see text] and the degree of heterogeneity in transmission from stuttering chain data have important applications in disease surveillance and management. Previous researchers have used chain size distributions to infer [Image: see text], but estimation of the degree of individual-level variation in infectiousness (as quantified by the dispersion parameter, [Image: see text]) has typically required contact tracing data. Utilizing branching process theory along with a negative binomial offspring distribution, we demonstrate how maximum likelihood estimation can be applied to chain size data to infer both [Image: see text] and the dispersion parameter that characterizes heterogeneity. While the maximum likelihood value for [Image: see text] is a simple function of the average chain size, the associated confidence intervals are dependent on the inferred degree of transmission heterogeneity. As demonstrated for monkeypox data from the Democratic Republic of Congo, this impacts when a statistically significant change in [Image: see text] is detectable. In addition, by allowing for superspreading events, inference of [Image: see text] shifts the threshold above which a transmission chain should be considered anomalously large for a given value of [Image: see text] (thus reducing the probability of false alarms about pathogen adaptation). Our analysis of monkeypox also clarifies the various ways that imperfect observation can impact inference of transmission parameters, and highlights the need to quantitatively evaluate whether observation is likely to significantly bias results. Public Library of Science 2013-05-02 /pmc/articles/PMC3642075/ /pubmed/23658504 http://dx.doi.org/10.1371/journal.pcbi.1002993 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Blumberg, Seth Lloyd-Smith, James O. Inference of R (0) and Transmission Heterogeneity from the Size Distribution of Stuttering Chains |
title | Inference of R
(0) and Transmission Heterogeneity from the Size Distribution of Stuttering Chains |
title_full | Inference of R
(0) and Transmission Heterogeneity from the Size Distribution of Stuttering Chains |
title_fullStr | Inference of R
(0) and Transmission Heterogeneity from the Size Distribution of Stuttering Chains |
title_full_unstemmed | Inference of R
(0) and Transmission Heterogeneity from the Size Distribution of Stuttering Chains |
title_short | Inference of R
(0) and Transmission Heterogeneity from the Size Distribution of Stuttering Chains |
title_sort | inference of r
(0) and transmission heterogeneity from the size distribution of stuttering chains |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642075/ https://www.ncbi.nlm.nih.gov/pubmed/23658504 http://dx.doi.org/10.1371/journal.pcbi.1002993 |
work_keys_str_mv | AT blumbergseth inferenceofr0andtransmissionheterogeneityfromthesizedistributionofstutteringchains AT lloydsmithjameso inferenceofr0andtransmissionheterogeneityfromthesizedistributionofstutteringchains |