Cargando…

Tyrosine phosphorylation plays a role in increasing maspin protein levels and its cytoplasmic accumulation

Maspin is a tumor suppressor with many biological activities, multiple ligands and different subcellular localizations. Its underlying molecular mechanism remains elusive. We hypothesized that phosphorylation might regulate maspin localization and function. Using two-dimensional gel electrophoresis...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamazato Longhi, Mariana, Cella, Nathalie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642124/
https://www.ncbi.nlm.nih.gov/pubmed/23650586
http://dx.doi.org/10.1016/j.fob.2012.04.006
Descripción
Sumario:Maspin is a tumor suppressor with many biological activities, multiple ligands and different subcellular localizations. Its underlying molecular mechanism remains elusive. We hypothesized that phosphorylation might regulate maspin localization and function. Using two-dimensional gel electrophoresis with different focusing power followed by Western blot we identified four different maspin forms with the same molecular weight (42 kDa), but different isoelectric points. Three of these forms were sensitive to acidic phosphatase treatment, suggesting that they are phosphorylated. Sodium peroxidovanadate treatment, a protein-tyrosine phosphatase inhibitor, resulted in a rapid increase in maspin protein levels and cytoplasmic accumulation. These data show that there are three different maspin tyrosine phosphoforms. Inhibition of tyrosine phosphatases increased maspin protein levels and leads to its cytoplasmic accumulation.