Cargando…
Human and Viral Golgi Anti-apoptotic Proteins (GAAPs) Oligomerize via Different Mechanisms and Monomeric GAAP Inhibits Apoptosis and Modulates Calcium
Golgi anti-apoptotic proteins (GAAPs) are hydrophobic proteins resident in membranes of the Golgi complex. They protect cells from a range of apoptotic stimuli, reduce the Ca(2+) content of intracellular stores, and regulate Ca(2+) fluxes. GAAP was discovered in camelpox virus, but it is highly cons...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642348/ https://www.ncbi.nlm.nih.gov/pubmed/23508950 http://dx.doi.org/10.1074/jbc.M112.414367 |
_version_ | 1782268128925843456 |
---|---|
author | Saraiva, Nuno Prole, David L. Carrara, Guia de Motes, Carlos Maluquer Johnson, Benjamin F. Byrne, Bernadette Taylor, Colin W. Smith, Geoffrey L. |
author_facet | Saraiva, Nuno Prole, David L. Carrara, Guia de Motes, Carlos Maluquer Johnson, Benjamin F. Byrne, Bernadette Taylor, Colin W. Smith, Geoffrey L. |
author_sort | Saraiva, Nuno |
collection | PubMed |
description | Golgi anti-apoptotic proteins (GAAPs) are hydrophobic proteins resident in membranes of the Golgi complex. They protect cells from a range of apoptotic stimuli, reduce the Ca(2+) content of intracellular stores, and regulate Ca(2+) fluxes. GAAP was discovered in camelpox virus, but it is highly conserved throughout evolution and encoded by all eukaryote genomes examined. GAAPs are part of the transmembrane Bax inhibitor-containing motif (TMBIM) family that also includes other anti-apoptotic and Ca(2+)-modulating membrane proteins. Most TMBIM members show multiple bands when analyzed by SDS-PAGE, suggesting that they may be oligomeric. However, the molecular mechanisms of oligomerization, the native state of GAAPs in living cells and the functional significance of oligomerization have not been addressed. TMBIM members are thought to have evolved from an ancestral GAAP. Two different GAAPs, human (h) and viral (v)GAAP were therefore selected as models to examine oligomerization of TMBIM family members. We show that both hGAAP and vGAAP in their native states form oligomers and that oligomerization is pH-dependent. Surprisingly, hGAAP and vGAAP do not share the same oligomerization mechanism. Oligomerization of hGAAP is independent of cysteines, but oligomerization of vGAAP depends on cysteines 9 and 60. A mutant vGAAP that is unable to oligomerize revealed that monomeric vGAAP retains both its anti-apoptotic function and its effect on intracellular Ca(2+) stores. In conclusion, GAAP can oligomerize in a pH-regulated manner, and monomeric GAAP is functional. |
format | Online Article Text |
id | pubmed-3642348 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-36423482013-05-08 Human and Viral Golgi Anti-apoptotic Proteins (GAAPs) Oligomerize via Different Mechanisms and Monomeric GAAP Inhibits Apoptosis and Modulates Calcium Saraiva, Nuno Prole, David L. Carrara, Guia de Motes, Carlos Maluquer Johnson, Benjamin F. Byrne, Bernadette Taylor, Colin W. Smith, Geoffrey L. J Biol Chem Cell Biology Golgi anti-apoptotic proteins (GAAPs) are hydrophobic proteins resident in membranes of the Golgi complex. They protect cells from a range of apoptotic stimuli, reduce the Ca(2+) content of intracellular stores, and regulate Ca(2+) fluxes. GAAP was discovered in camelpox virus, but it is highly conserved throughout evolution and encoded by all eukaryote genomes examined. GAAPs are part of the transmembrane Bax inhibitor-containing motif (TMBIM) family that also includes other anti-apoptotic and Ca(2+)-modulating membrane proteins. Most TMBIM members show multiple bands when analyzed by SDS-PAGE, suggesting that they may be oligomeric. However, the molecular mechanisms of oligomerization, the native state of GAAPs in living cells and the functional significance of oligomerization have not been addressed. TMBIM members are thought to have evolved from an ancestral GAAP. Two different GAAPs, human (h) and viral (v)GAAP were therefore selected as models to examine oligomerization of TMBIM family members. We show that both hGAAP and vGAAP in their native states form oligomers and that oligomerization is pH-dependent. Surprisingly, hGAAP and vGAAP do not share the same oligomerization mechanism. Oligomerization of hGAAP is independent of cysteines, but oligomerization of vGAAP depends on cysteines 9 and 60. A mutant vGAAP that is unable to oligomerize revealed that monomeric vGAAP retains both its anti-apoptotic function and its effect on intracellular Ca(2+) stores. In conclusion, GAAP can oligomerize in a pH-regulated manner, and monomeric GAAP is functional. American Society for Biochemistry and Molecular Biology 2013-05-03 2013-03-18 /pmc/articles/PMC3642348/ /pubmed/23508950 http://dx.doi.org/10.1074/jbc.M112.414367 Text en © 2013 by The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice—Final version full access. Creative Commons Attribution Unported License (http://creativecommons.org/licenses/by/3.0/) applies to Author Choice Articles |
spellingShingle | Cell Biology Saraiva, Nuno Prole, David L. Carrara, Guia de Motes, Carlos Maluquer Johnson, Benjamin F. Byrne, Bernadette Taylor, Colin W. Smith, Geoffrey L. Human and Viral Golgi Anti-apoptotic Proteins (GAAPs) Oligomerize via Different Mechanisms and Monomeric GAAP Inhibits Apoptosis and Modulates Calcium |
title | Human and Viral Golgi Anti-apoptotic Proteins (GAAPs) Oligomerize via Different Mechanisms and Monomeric GAAP Inhibits Apoptosis and Modulates Calcium |
title_full | Human and Viral Golgi Anti-apoptotic Proteins (GAAPs) Oligomerize via Different Mechanisms and Monomeric GAAP Inhibits Apoptosis and Modulates Calcium |
title_fullStr | Human and Viral Golgi Anti-apoptotic Proteins (GAAPs) Oligomerize via Different Mechanisms and Monomeric GAAP Inhibits Apoptosis and Modulates Calcium |
title_full_unstemmed | Human and Viral Golgi Anti-apoptotic Proteins (GAAPs) Oligomerize via Different Mechanisms and Monomeric GAAP Inhibits Apoptosis and Modulates Calcium |
title_short | Human and Viral Golgi Anti-apoptotic Proteins (GAAPs) Oligomerize via Different Mechanisms and Monomeric GAAP Inhibits Apoptosis and Modulates Calcium |
title_sort | human and viral golgi anti-apoptotic proteins (gaaps) oligomerize via different mechanisms and monomeric gaap inhibits apoptosis and modulates calcium |
topic | Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642348/ https://www.ncbi.nlm.nih.gov/pubmed/23508950 http://dx.doi.org/10.1074/jbc.M112.414367 |
work_keys_str_mv | AT saraivanuno humanandviralgolgiantiapoptoticproteinsgaapsoligomerizeviadifferentmechanismsandmonomericgaapinhibitsapoptosisandmodulatescalcium AT proledavidl humanandviralgolgiantiapoptoticproteinsgaapsoligomerizeviadifferentmechanismsandmonomericgaapinhibitsapoptosisandmodulatescalcium AT carraraguia humanandviralgolgiantiapoptoticproteinsgaapsoligomerizeviadifferentmechanismsandmonomericgaapinhibitsapoptosisandmodulatescalcium AT demotescarlosmaluquer humanandviralgolgiantiapoptoticproteinsgaapsoligomerizeviadifferentmechanismsandmonomericgaapinhibitsapoptosisandmodulatescalcium AT johnsonbenjaminf humanandviralgolgiantiapoptoticproteinsgaapsoligomerizeviadifferentmechanismsandmonomericgaapinhibitsapoptosisandmodulatescalcium AT byrnebernadette humanandviralgolgiantiapoptoticproteinsgaapsoligomerizeviadifferentmechanismsandmonomericgaapinhibitsapoptosisandmodulatescalcium AT taylorcolinw humanandviralgolgiantiapoptoticproteinsgaapsoligomerizeviadifferentmechanismsandmonomericgaapinhibitsapoptosisandmodulatescalcium AT smithgeoffreyl humanandviralgolgiantiapoptoticproteinsgaapsoligomerizeviadifferentmechanismsandmonomericgaapinhibitsapoptosisandmodulatescalcium |