Cargando…
The Walking-Induced Transient Hack Concept Is Valid & Relies on a Transient Early-Exercise Hypoxemia
BACKGROUND: Decreased arterial oxygen pressure obtained at peak exercise is strong evidence of walking-induced hypoxemia, assuming that the lower pressure occurs just before exercise is stopped. Using empirical predefined models and transcutaneous oximetry, we have shown that some patients reporting...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3643941/ https://www.ncbi.nlm.nih.gov/pubmed/23658759 http://dx.doi.org/10.1371/journal.pone.0062651 |
Sumario: | BACKGROUND: Decreased arterial oxygen pressure obtained at peak exercise is strong evidence of walking-induced hypoxemia, assuming that the lower pressure occurs just before exercise is stopped. Using empirical predefined models and transcutaneous oximetry, we have shown that some patients reporting exercise intolerance show a minimal value at the onset of walking and a post-exercise overshoot. These changes are referred to as transcutaneous “walking-induced transient hacks”. METHODS: In 245 patients, walking-induced transcutaneous oxygen pressure changes in the chest were analyzed using observer-independent clustering techniques. Clustering classes were compared to the profile types previously proposed with the cross-correlation technique. The classifications of patients according to both approaches were compared using kappa statistics. In 10 patients showing a hack on transcutaneous oximetry, we analyzed the results of direct iterative arterial sampling recorded during a new walking treadmill test. RESULTS: Clustering analysis resulted in 4 classes that closely fit the 4 most frequently proposed empirical models (cross-correlation coefficients: 0.93 to 0.97). The kappa between the two classifications was 0.865. In 10 patients showing transcutaneous hacks, the minimal direct arterial oxygen pressure value occurred at exercise onset, and these patients exhibited a recovery overshoot reaching a maximum at two minutes of recovery, confirming the walking-induced transient hypoxemia. CONCLUSIONS: In patients reporting exercise intolerance, transcutaneous oximetry could help to detect walking-induced transient hypoxemia, while peak-exercise arterial oximetry might be normal. |
---|