Cargando…
A Model-Based Spike Sorting Algorithm for Removing Correlation Artifacts in Multi-Neuron Recordings
We examine the problem of estimating the spike trains of multiple neurons from voltage traces recorded on one or more extracellular electrodes. Traditional spike-sorting methods rely on thresholding or clustering of recorded signals to identify spikes. While these methods can detect a large fraction...
Autores principales: | Pillow, Jonathan W., Shlens, Jonathon, Chichilnisky, E. J., Simoncelli, Eero P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3643981/ https://www.ncbi.nlm.nih.gov/pubmed/23671583 http://dx.doi.org/10.1371/journal.pone.0062123 |
Ejemplares similares
-
Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays
por: Mena, Gonzalo E., et al.
Publicado: (2017) -
Inference of nonlinear receptive field subunits with spike-triggered clustering
por: Shah, Nishal P, et al.
Publicado: (2020) -
How many neurons can we see with current spike sorting algorithms?
por: Pedreira, Carlos, et al.
Publicado: (2012) -
Modeling realistic extracellular spiking activity in populations of neurons for the purpose of evaluating automatic spike-sorting algorithms
por: Hagen, Espen, et al.
Publicado: (2012) -
Sorting Overlapping Spike Waveforms from Electrode and Tetrode Recordings
por: Mokri, Yasamin, et al.
Publicado: (2017)