Cargando…

Quantum engineering at the silicon surface using dangling bonds

Individual atoms and ions are now routinely manipulated using scanning tunnelling microscopes or electromagnetic traps for the creation and control of artificial quantum states. For applications such as quantum information processing, the ability to introduce multiple atomic-scale defects determinis...

Descripción completa

Detalles Bibliográficos
Autores principales: Schofield, S. R., Studer, P., Hirjibehedin, C. F., Curson, N. J., Aeppli, G., Bowler, D. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644071/
https://www.ncbi.nlm.nih.gov/pubmed/23552064
http://dx.doi.org/10.1038/ncomms2679
_version_ 1782268415312920576
author Schofield, S. R.
Studer, P.
Hirjibehedin, C. F.
Curson, N. J.
Aeppli, G.
Bowler, D. R.
author_facet Schofield, S. R.
Studer, P.
Hirjibehedin, C. F.
Curson, N. J.
Aeppli, G.
Bowler, D. R.
author_sort Schofield, S. R.
collection PubMed
description Individual atoms and ions are now routinely manipulated using scanning tunnelling microscopes or electromagnetic traps for the creation and control of artificial quantum states. For applications such as quantum information processing, the ability to introduce multiple atomic-scale defects deterministically in a semiconductor is highly desirable. Here we use a scanning tunnelling microscope to fabricate interacting chains of dangling bond defects on the hydrogen-passivated silicon (001) surface. We image both the ground-state and the excited-state probability distributions of the resulting artificial molecular orbitals, using the scanning tunnelling microscope tip bias and tip-sample separation as gates to control which states contribute to the image. Our results demonstrate that atomically precise quantum states can be fabricated on silicon, and suggest a general model of quantum-state fabrication using other chemically passivated semiconductor surfaces where single-atom depassivation can be achieved using scanning tunnelling microscopy.
format Online
Article
Text
id pubmed-3644071
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-36440712013-05-17 Quantum engineering at the silicon surface using dangling bonds Schofield, S. R. Studer, P. Hirjibehedin, C. F. Curson, N. J. Aeppli, G. Bowler, D. R. Nat Commun Article Individual atoms and ions are now routinely manipulated using scanning tunnelling microscopes or electromagnetic traps for the creation and control of artificial quantum states. For applications such as quantum information processing, the ability to introduce multiple atomic-scale defects deterministically in a semiconductor is highly desirable. Here we use a scanning tunnelling microscope to fabricate interacting chains of dangling bond defects on the hydrogen-passivated silicon (001) surface. We image both the ground-state and the excited-state probability distributions of the resulting artificial molecular orbitals, using the scanning tunnelling microscope tip bias and tip-sample separation as gates to control which states contribute to the image. Our results demonstrate that atomically precise quantum states can be fabricated on silicon, and suggest a general model of quantum-state fabrication using other chemically passivated semiconductor surfaces where single-atom depassivation can be achieved using scanning tunnelling microscopy. Nature Pub. Group 2013-04-03 /pmc/articles/PMC3644071/ /pubmed/23552064 http://dx.doi.org/10.1038/ncomms2679 Text en Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Schofield, S. R.
Studer, P.
Hirjibehedin, C. F.
Curson, N. J.
Aeppli, G.
Bowler, D. R.
Quantum engineering at the silicon surface using dangling bonds
title Quantum engineering at the silicon surface using dangling bonds
title_full Quantum engineering at the silicon surface using dangling bonds
title_fullStr Quantum engineering at the silicon surface using dangling bonds
title_full_unstemmed Quantum engineering at the silicon surface using dangling bonds
title_short Quantum engineering at the silicon surface using dangling bonds
title_sort quantum engineering at the silicon surface using dangling bonds
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644071/
https://www.ncbi.nlm.nih.gov/pubmed/23552064
http://dx.doi.org/10.1038/ncomms2679
work_keys_str_mv AT schofieldsr quantumengineeringatthesiliconsurfaceusingdanglingbonds
AT studerp quantumengineeringatthesiliconsurfaceusingdanglingbonds
AT hirjibehedincf quantumengineeringatthesiliconsurfaceusingdanglingbonds
AT cursonnj quantumengineeringatthesiliconsurfaceusingdanglingbonds
AT aepplig quantumengineeringatthesiliconsurfaceusingdanglingbonds
AT bowlerdr quantumengineeringatthesiliconsurfaceusingdanglingbonds