Cargando…
Microcavity controlled coupling of excitonic qubits
Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. This process is intuitively pictured by a pair of mechanical oscillators, coupled by a spring, allowing for a reversible exchange of excitation. On a m...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644086/ https://www.ncbi.nlm.nih.gov/pubmed/23612288 http://dx.doi.org/10.1038/ncomms2764 |
_version_ | 1782268418749104128 |
---|---|
author | Albert, F. Sivalertporn, K. Kasprzak, J. Strauß, M. Schneider, C. Höfling, S. Kamp, M. Forchel, A. Reitzenstein, S. Muljarov, E.A. Langbein, W. |
author_facet | Albert, F. Sivalertporn, K. Kasprzak, J. Strauß, M. Schneider, C. Höfling, S. Kamp, M. Forchel, A. Reitzenstein, S. Muljarov, E.A. Langbein, W. |
author_sort | Albert, F. |
collection | PubMed |
description | Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. This process is intuitively pictured by a pair of mechanical oscillators, coupled by a spring, allowing for a reversible exchange of excitation. On a microscopic level, the most relevant mechanism of coherent coupling of distant quantum bits—like trapped ions, superconducting qubits or excitons confined in semiconductor quantum dots—is coupling via the electromagnetic field. Here we demonstrate the controlled coherent coupling of spatially separated quantum dots via the photon mode of a solid state microresonator using the strong exciton–photon coupling regime. This is enabled by two-dimensional spectroscopy of the sample’s coherent response, a sensitive probe of the coherent coupling. The results are quantitatively understood in a rigorous description of the cavity-mediated coupling of the quantum dot excitons. This mechanism can be used, for instance in photonic crystal cavity networks, to enable a long-range, non-local coherent coupling. |
format | Online Article Text |
id | pubmed-3644086 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-36440862013-05-17 Microcavity controlled coupling of excitonic qubits Albert, F. Sivalertporn, K. Kasprzak, J. Strauß, M. Schneider, C. Höfling, S. Kamp, M. Forchel, A. Reitzenstein, S. Muljarov, E.A. Langbein, W. Nat Commun Article Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. This process is intuitively pictured by a pair of mechanical oscillators, coupled by a spring, allowing for a reversible exchange of excitation. On a microscopic level, the most relevant mechanism of coherent coupling of distant quantum bits—like trapped ions, superconducting qubits or excitons confined in semiconductor quantum dots—is coupling via the electromagnetic field. Here we demonstrate the controlled coherent coupling of spatially separated quantum dots via the photon mode of a solid state microresonator using the strong exciton–photon coupling regime. This is enabled by two-dimensional spectroscopy of the sample’s coherent response, a sensitive probe of the coherent coupling. The results are quantitatively understood in a rigorous description of the cavity-mediated coupling of the quantum dot excitons. This mechanism can be used, for instance in photonic crystal cavity networks, to enable a long-range, non-local coherent coupling. Nature Pub. Group 2013-04-23 /pmc/articles/PMC3644086/ /pubmed/23612288 http://dx.doi.org/10.1038/ncomms2764 Text en Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ |
spellingShingle | Article Albert, F. Sivalertporn, K. Kasprzak, J. Strauß, M. Schneider, C. Höfling, S. Kamp, M. Forchel, A. Reitzenstein, S. Muljarov, E.A. Langbein, W. Microcavity controlled coupling of excitonic qubits |
title | Microcavity controlled coupling of excitonic qubits |
title_full | Microcavity controlled coupling of excitonic qubits |
title_fullStr | Microcavity controlled coupling of excitonic qubits |
title_full_unstemmed | Microcavity controlled coupling of excitonic qubits |
title_short | Microcavity controlled coupling of excitonic qubits |
title_sort | microcavity controlled coupling of excitonic qubits |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644086/ https://www.ncbi.nlm.nih.gov/pubmed/23612288 http://dx.doi.org/10.1038/ncomms2764 |
work_keys_str_mv | AT albertf microcavitycontrolledcouplingofexcitonicqubits AT sivalertpornk microcavitycontrolledcouplingofexcitonicqubits AT kasprzakj microcavitycontrolledcouplingofexcitonicqubits AT straußm microcavitycontrolledcouplingofexcitonicqubits AT schneiderc microcavitycontrolledcouplingofexcitonicqubits AT hoflings microcavitycontrolledcouplingofexcitonicqubits AT kampm microcavitycontrolledcouplingofexcitonicqubits AT forchela microcavitycontrolledcouplingofexcitonicqubits AT reitzensteins microcavitycontrolledcouplingofexcitonicqubits AT muljarovea microcavitycontrolledcouplingofexcitonicqubits AT langbeinw microcavitycontrolledcouplingofexcitonicqubits |