Cargando…

Microcavity controlled coupling of excitonic qubits

Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. This process is intuitively pictured by a pair of mechanical oscillators, coupled by a spring, allowing for a reversible exchange of excitation. On a m...

Descripción completa

Detalles Bibliográficos
Autores principales: Albert, F., Sivalertporn, K., Kasprzak, J., Strauß, M., Schneider, C., Höfling, S., Kamp, M., Forchel, A., Reitzenstein, S., Muljarov, E.A., Langbein, W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644086/
https://www.ncbi.nlm.nih.gov/pubmed/23612288
http://dx.doi.org/10.1038/ncomms2764
_version_ 1782268418749104128
author Albert, F.
Sivalertporn, K.
Kasprzak, J.
Strauß, M.
Schneider, C.
Höfling, S.
Kamp, M.
Forchel, A.
Reitzenstein, S.
Muljarov, E.A.
Langbein, W.
author_facet Albert, F.
Sivalertporn, K.
Kasprzak, J.
Strauß, M.
Schneider, C.
Höfling, S.
Kamp, M.
Forchel, A.
Reitzenstein, S.
Muljarov, E.A.
Langbein, W.
author_sort Albert, F.
collection PubMed
description Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. This process is intuitively pictured by a pair of mechanical oscillators, coupled by a spring, allowing for a reversible exchange of excitation. On a microscopic level, the most relevant mechanism of coherent coupling of distant quantum bits—like trapped ions, superconducting qubits or excitons confined in semiconductor quantum dots—is coupling via the electromagnetic field. Here we demonstrate the controlled coherent coupling of spatially separated quantum dots via the photon mode of a solid state microresonator using the strong exciton–photon coupling regime. This is enabled by two-dimensional spectroscopy of the sample’s coherent response, a sensitive probe of the coherent coupling. The results are quantitatively understood in a rigorous description of the cavity-mediated coupling of the quantum dot excitons. This mechanism can be used, for instance in photonic crystal cavity networks, to enable a long-range, non-local coherent coupling.
format Online
Article
Text
id pubmed-3644086
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-36440862013-05-17 Microcavity controlled coupling of excitonic qubits Albert, F. Sivalertporn, K. Kasprzak, J. Strauß, M. Schneider, C. Höfling, S. Kamp, M. Forchel, A. Reitzenstein, S. Muljarov, E.A. Langbein, W. Nat Commun Article Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. This process is intuitively pictured by a pair of mechanical oscillators, coupled by a spring, allowing for a reversible exchange of excitation. On a microscopic level, the most relevant mechanism of coherent coupling of distant quantum bits—like trapped ions, superconducting qubits or excitons confined in semiconductor quantum dots—is coupling via the electromagnetic field. Here we demonstrate the controlled coherent coupling of spatially separated quantum dots via the photon mode of a solid state microresonator using the strong exciton–photon coupling regime. This is enabled by two-dimensional spectroscopy of the sample’s coherent response, a sensitive probe of the coherent coupling. The results are quantitatively understood in a rigorous description of the cavity-mediated coupling of the quantum dot excitons. This mechanism can be used, for instance in photonic crystal cavity networks, to enable a long-range, non-local coherent coupling. Nature Pub. Group 2013-04-23 /pmc/articles/PMC3644086/ /pubmed/23612288 http://dx.doi.org/10.1038/ncomms2764 Text en Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
spellingShingle Article
Albert, F.
Sivalertporn, K.
Kasprzak, J.
Strauß, M.
Schneider, C.
Höfling, S.
Kamp, M.
Forchel, A.
Reitzenstein, S.
Muljarov, E.A.
Langbein, W.
Microcavity controlled coupling of excitonic qubits
title Microcavity controlled coupling of excitonic qubits
title_full Microcavity controlled coupling of excitonic qubits
title_fullStr Microcavity controlled coupling of excitonic qubits
title_full_unstemmed Microcavity controlled coupling of excitonic qubits
title_short Microcavity controlled coupling of excitonic qubits
title_sort microcavity controlled coupling of excitonic qubits
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644086/
https://www.ncbi.nlm.nih.gov/pubmed/23612288
http://dx.doi.org/10.1038/ncomms2764
work_keys_str_mv AT albertf microcavitycontrolledcouplingofexcitonicqubits
AT sivalertpornk microcavitycontrolledcouplingofexcitonicqubits
AT kasprzakj microcavitycontrolledcouplingofexcitonicqubits
AT straußm microcavitycontrolledcouplingofexcitonicqubits
AT schneiderc microcavitycontrolledcouplingofexcitonicqubits
AT hoflings microcavitycontrolledcouplingofexcitonicqubits
AT kampm microcavitycontrolledcouplingofexcitonicqubits
AT forchela microcavitycontrolledcouplingofexcitonicqubits
AT reitzensteins microcavitycontrolledcouplingofexcitonicqubits
AT muljarovea microcavitycontrolledcouplingofexcitonicqubits
AT langbeinw microcavitycontrolledcouplingofexcitonicqubits