Cargando…
Computing minimal nutrient sets from metabolic networks via linear constraint solving
BACKGROUND: As more complete genome sequences become available, bioinformatics challenges arise in how to exploit genome sequences to make phenotypic predictions. One type of phenotypic prediction is to determine sets of compounds that will support the growth of a bacterium from the metabolic networ...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644277/ https://www.ncbi.nlm.nih.gov/pubmed/23537498 http://dx.doi.org/10.1186/1471-2105-14-114 |
_version_ | 1782268444719185920 |
---|---|
author | Eker, Steven Krummenacker, Markus Shearer, Alexander G Tiwari, Ashish Keseler, Ingrid M Talcott, Carolyn Karp, Peter D |
author_facet | Eker, Steven Krummenacker, Markus Shearer, Alexander G Tiwari, Ashish Keseler, Ingrid M Talcott, Carolyn Karp, Peter D |
author_sort | Eker, Steven |
collection | PubMed |
description | BACKGROUND: As more complete genome sequences become available, bioinformatics challenges arise in how to exploit genome sequences to make phenotypic predictions. One type of phenotypic prediction is to determine sets of compounds that will support the growth of a bacterium from the metabolic network inferred from the genome sequence of that organism. RESULTS: We present a method for computationally determining alternative growth media for an organism based on its metabolic network and transporter complement. Our method predicted 787 alternative anaerobic minimal nutrient sets for Escherichia coli K–12 MG1655 from the EcoCyc database. The program automatically partitioned the nutrients within these sets into 21 equivalence classes, most of which correspond to compounds serving as sources of carbon, nitrogen, phosphorous, and sulfur, or combinations of these essential elements. The nutrient sets were predicted with 72.5% accuracy as evaluated by comparison with 91 growth experiments. Novel aspects of our approach include (a) exhaustive consideration of all combinations of nutrients rather than assuming that all element sources can substitute for one another(an assumption that can be invalid in general) (b) leveraging the notion of a machinery-duplicating constraint, namely, that all intermediate metabolites used in active reactions must be produced in increasing concentrations to prevent successive dilution from cell division, (c) the use of Satisfiability Modulo Theory solvers rather than Linear Programming solvers, because our approach cannot be formulated as linear programming, (d) the use of Binary Decision Diagrams to produce an efficient implementation. CONCLUSIONS: Our method for generating minimal nutrient sets from the metabolic network and transporters of an organism combines linear constraint solving with binary decision diagrams to efficiently produce solution sets to provided growth problems. |
format | Online Article Text |
id | pubmed-3644277 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36442772013-05-10 Computing minimal nutrient sets from metabolic networks via linear constraint solving Eker, Steven Krummenacker, Markus Shearer, Alexander G Tiwari, Ashish Keseler, Ingrid M Talcott, Carolyn Karp, Peter D BMC Bioinformatics Research Article BACKGROUND: As more complete genome sequences become available, bioinformatics challenges arise in how to exploit genome sequences to make phenotypic predictions. One type of phenotypic prediction is to determine sets of compounds that will support the growth of a bacterium from the metabolic network inferred from the genome sequence of that organism. RESULTS: We present a method for computationally determining alternative growth media for an organism based on its metabolic network and transporter complement. Our method predicted 787 alternative anaerobic minimal nutrient sets for Escherichia coli K–12 MG1655 from the EcoCyc database. The program automatically partitioned the nutrients within these sets into 21 equivalence classes, most of which correspond to compounds serving as sources of carbon, nitrogen, phosphorous, and sulfur, or combinations of these essential elements. The nutrient sets were predicted with 72.5% accuracy as evaluated by comparison with 91 growth experiments. Novel aspects of our approach include (a) exhaustive consideration of all combinations of nutrients rather than assuming that all element sources can substitute for one another(an assumption that can be invalid in general) (b) leveraging the notion of a machinery-duplicating constraint, namely, that all intermediate metabolites used in active reactions must be produced in increasing concentrations to prevent successive dilution from cell division, (c) the use of Satisfiability Modulo Theory solvers rather than Linear Programming solvers, because our approach cannot be formulated as linear programming, (d) the use of Binary Decision Diagrams to produce an efficient implementation. CONCLUSIONS: Our method for generating minimal nutrient sets from the metabolic network and transporters of an organism combines linear constraint solving with binary decision diagrams to efficiently produce solution sets to provided growth problems. BioMed Central 2013-03-27 /pmc/articles/PMC3644277/ /pubmed/23537498 http://dx.doi.org/10.1186/1471-2105-14-114 Text en Copyright © 2013 Eker et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Eker, Steven Krummenacker, Markus Shearer, Alexander G Tiwari, Ashish Keseler, Ingrid M Talcott, Carolyn Karp, Peter D Computing minimal nutrient sets from metabolic networks via linear constraint solving |
title | Computing minimal nutrient sets from metabolic networks via linear constraint solving |
title_full | Computing minimal nutrient sets from metabolic networks via linear constraint solving |
title_fullStr | Computing minimal nutrient sets from metabolic networks via linear constraint solving |
title_full_unstemmed | Computing minimal nutrient sets from metabolic networks via linear constraint solving |
title_short | Computing minimal nutrient sets from metabolic networks via linear constraint solving |
title_sort | computing minimal nutrient sets from metabolic networks via linear constraint solving |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644277/ https://www.ncbi.nlm.nih.gov/pubmed/23537498 http://dx.doi.org/10.1186/1471-2105-14-114 |
work_keys_str_mv | AT ekersteven computingminimalnutrientsetsfrommetabolicnetworksvialinearconstraintsolving AT krummenackermarkus computingminimalnutrientsetsfrommetabolicnetworksvialinearconstraintsolving AT sheareralexanderg computingminimalnutrientsetsfrommetabolicnetworksvialinearconstraintsolving AT tiwariashish computingminimalnutrientsetsfrommetabolicnetworksvialinearconstraintsolving AT keseleringridm computingminimalnutrientsetsfrommetabolicnetworksvialinearconstraintsolving AT talcottcarolyn computingminimalnutrientsetsfrommetabolicnetworksvialinearconstraintsolving AT karppeterd computingminimalnutrientsetsfrommetabolicnetworksvialinearconstraintsolving |