Cargando…
Age-specific contacts and travel patterns in the spatial spread of 2009 H1N1 influenza pandemic
BACKGROUND: Confirmed H1N1 cases during late spring and summer 2009 in various countries showed a substantial age shift between importations and local transmission cases, with adults mainly responsible for seeding unaffected regions and children most frequently driving community outbreaks. METHODS:...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644502/ https://www.ncbi.nlm.nih.gov/pubmed/23587010 http://dx.doi.org/10.1186/1471-2334-13-176 |
_version_ | 1782268458643226624 |
---|---|
author | Apolloni, Andrea Poletto, Chiara Colizza, Vittoria |
author_facet | Apolloni, Andrea Poletto, Chiara Colizza, Vittoria |
author_sort | Apolloni, Andrea |
collection | PubMed |
description | BACKGROUND: Confirmed H1N1 cases during late spring and summer 2009 in various countries showed a substantial age shift between importations and local transmission cases, with adults mainly responsible for seeding unaffected regions and children most frequently driving community outbreaks. METHODS: We introduce a multi-host stochastic metapopulation model with two age classes to analytically investigate the role of a heterogeneously mixing population and its associated non-homogeneous travel behaviors on the risk of a major epidemic. We inform the model with demographic data, contact data and travel statistics of Europe and Mexico, and calibrate it to the 2009 H1N1 pandemic early outbreak. We allow for variations of the model parameters to explore the conditions of invasion under different scenarios. RESULTS: We derive the expression for the potential of global invasion of the epidemic that depends on the transmissibility of the pathogen, the transportation network and mobility features, the demographic profile and the mixing pattern. Higher assortativity in the contact pattern greatly increases the probability of spatial containment of the epidemic, this effect being contrasted by an increase in the social activity of adults vs. children. Heterogeneous features of the mobility network characterizing its topology and traffic flows strongly favor the invasion of the pathogen at the spatial level, as also a larger fraction of children traveling. Variations in the demographic profile and mixing habits across countries lead to heterogeneous outbreak situations. Model results are compatible with the H1N1 spatial transmission dynamics observed. CONCLUSIONS: This work illustrates the importance of considering age-dependent mixing profiles and mobility features coupled together to study the conditions for the spatial invasion of an emerging influenza pandemic. Its results allow the immediate assessment of the risk of a major epidemic for a specific scenario upon availability of data, and the evaluation of the potential effectiveness of public health interventions targeting specific age groups, their interactions and mobility behaviors. The approach provides a general modeling framework that can be used for other types of partitions of the host population and applied to different settings. |
format | Online Article Text |
id | pubmed-3644502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36445022013-05-07 Age-specific contacts and travel patterns in the spatial spread of 2009 H1N1 influenza pandemic Apolloni, Andrea Poletto, Chiara Colizza, Vittoria BMC Infect Dis Research Article BACKGROUND: Confirmed H1N1 cases during late spring and summer 2009 in various countries showed a substantial age shift between importations and local transmission cases, with adults mainly responsible for seeding unaffected regions and children most frequently driving community outbreaks. METHODS: We introduce a multi-host stochastic metapopulation model with two age classes to analytically investigate the role of a heterogeneously mixing population and its associated non-homogeneous travel behaviors on the risk of a major epidemic. We inform the model with demographic data, contact data and travel statistics of Europe and Mexico, and calibrate it to the 2009 H1N1 pandemic early outbreak. We allow for variations of the model parameters to explore the conditions of invasion under different scenarios. RESULTS: We derive the expression for the potential of global invasion of the epidemic that depends on the transmissibility of the pathogen, the transportation network and mobility features, the demographic profile and the mixing pattern. Higher assortativity in the contact pattern greatly increases the probability of spatial containment of the epidemic, this effect being contrasted by an increase in the social activity of adults vs. children. Heterogeneous features of the mobility network characterizing its topology and traffic flows strongly favor the invasion of the pathogen at the spatial level, as also a larger fraction of children traveling. Variations in the demographic profile and mixing habits across countries lead to heterogeneous outbreak situations. Model results are compatible with the H1N1 spatial transmission dynamics observed. CONCLUSIONS: This work illustrates the importance of considering age-dependent mixing profiles and mobility features coupled together to study the conditions for the spatial invasion of an emerging influenza pandemic. Its results allow the immediate assessment of the risk of a major epidemic for a specific scenario upon availability of data, and the evaluation of the potential effectiveness of public health interventions targeting specific age groups, their interactions and mobility behaviors. The approach provides a general modeling framework that can be used for other types of partitions of the host population and applied to different settings. BioMed Central 2013-04-15 /pmc/articles/PMC3644502/ /pubmed/23587010 http://dx.doi.org/10.1186/1471-2334-13-176 Text en Copyright © 2013 Apolloni et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Apolloni, Andrea Poletto, Chiara Colizza, Vittoria Age-specific contacts and travel patterns in the spatial spread of 2009 H1N1 influenza pandemic |
title | Age-specific contacts and travel patterns in the spatial spread of 2009 H1N1 influenza pandemic |
title_full | Age-specific contacts and travel patterns in the spatial spread of 2009 H1N1 influenza pandemic |
title_fullStr | Age-specific contacts and travel patterns in the spatial spread of 2009 H1N1 influenza pandemic |
title_full_unstemmed | Age-specific contacts and travel patterns in the spatial spread of 2009 H1N1 influenza pandemic |
title_short | Age-specific contacts and travel patterns in the spatial spread of 2009 H1N1 influenza pandemic |
title_sort | age-specific contacts and travel patterns in the spatial spread of 2009 h1n1 influenza pandemic |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644502/ https://www.ncbi.nlm.nih.gov/pubmed/23587010 http://dx.doi.org/10.1186/1471-2334-13-176 |
work_keys_str_mv | AT apolloniandrea agespecificcontactsandtravelpatternsinthespatialspreadof2009h1n1influenzapandemic AT polettochiara agespecificcontactsandtravelpatternsinthespatialspreadof2009h1n1influenzapandemic AT colizzavittoria agespecificcontactsandtravelpatternsinthespatialspreadof2009h1n1influenzapandemic |