Cargando…
Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists
Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory d...
Autores principales: | Testolin, Alberto, Stoianov, Ivilin, De Filippo De Grazia, Michele, Zorzi, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644707/ https://www.ncbi.nlm.nih.gov/pubmed/23653617 http://dx.doi.org/10.3389/fpsyg.2013.00251 |
Ejemplares similares
-
Modeling language and cognition with deep unsupervised learning: a tutorial overview
por: Zorzi, Marco, et al.
Publicado: (2013) -
Generative processing underlies the mutual enhancement of arithmetic fluency and math-grounding number sense
por: Stoianov, Ivilin P.
Publicado: (2014) -
The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding
por: Testolin, Alberto, et al.
Publicado: (2017) -
A comparison of feature extraction methods for prediction of neuropsychological scores from functional connectivity data of stroke patients
por: Calesella, Federico, et al.
Publicado: (2021) -
A new adaptive videogame for training attention and executive functions: design principles and initial validation
por: Montani, Veronica, et al.
Publicado: (2014)