Cargando…

Advances in bone surgery: the Er:YAG laser in oral surgery and implant dentistry

The erbium-doped yttrium aluminium garnet (Er:YAG) laser has emerged as a possible alternative to conventional methods of bone ablation because of its wavelength of 2.94 μm, which coincides with the absorption peak of water. Over the last decades in several experimental and clinical studies, the wid...

Descripción completa

Detalles Bibliográficos
Autor principal: Stübinger, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3645460/
https://www.ncbi.nlm.nih.gov/pubmed/23662082
Descripción
Sumario:The erbium-doped yttrium aluminium garnet (Er:YAG) laser has emerged as a possible alternative to conventional methods of bone ablation because of its wavelength of 2.94 μm, which coincides with the absorption peak of water. Over the last decades in several experimental and clinical studies, the widespread initial assumption that light amplification for stimulated emission of radiation (laser) osteotomy inevitably provokes profound tissue damage and delayed wound healing has been refuted. In addition, the supposed disadvantage of prolonged osteotomy times could be overcome by modern short-pulsed Er:YAG laser systems. Currently, the limiting factors for a routine application of lasers for bone ablation are mainly technical drawbacks such as missing depth control and a difficult and safe guidance of the laser beam. This article gives a short overview of the development process and current possibilities of noncontact Er:YAG laser osteotomy in oral and implant surgery.