Cargando…

Using decision tree learning to predict the responsiveness of hepatitis C patients to drug treatment

The recommended treatment for patients with chronic hepatitis C, pegylated interferon α (PEG-IFN-α) plus rebavirin (RBV), does not provide a sustained virologic response in all patients, especially those with hepatitis C virus (HCV) genotype 1. It is therefore important to predict whether or not a n...

Descripción completa

Detalles Bibliográficos
Autores principales: Kawamura, Yoshihiro, Takasaki, Shigeru, Mizokami, Masashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3645974/
https://www.ncbi.nlm.nih.gov/pubmed/23650587
http://dx.doi.org/10.1016/j.fob.2012.04.007
Descripción
Sumario:The recommended treatment for patients with chronic hepatitis C, pegylated interferon α (PEG-IFN-α) plus rebavirin (RBV), does not provide a sustained virologic response in all patients, especially those with hepatitis C virus (HCV) genotype 1. It is therefore important to predict whether or not a new patient with HCV genotype 1 will be cured by the recommended treatment. We propose a prediction method for a new patient using a decision tree learning model based on SNPs evaluated in a genome-wide association study. By the decision tree learning for 142 Japanese patients with HCV genotype 1 (78 with null virologic response and 64 with virologic response), we can predict with high probability (93%) whether or not a new patient with HCV will be helped by the recommended treatment.