Cargando…
Combining Classification with fMRI-Derived Complex Network Measures for Potential Neurodiagnostics
Complex network analysis (CNA), a subset of graph theory, is an emerging approach to the analysis of functional connectivity in the brain, allowing quantitative assessment of network properties such as functional segregation, integration, resilience, and centrality. Here, we show how a classificatio...
Autores principales: | Fekete, Tomer, Wilf, Meytal, Rubin, Denis, Edelman, Shimon, Malach, Rafael, Mujica-Parodi, Lilianne R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646016/ https://www.ncbi.nlm.nih.gov/pubmed/23671641 http://dx.doi.org/10.1371/journal.pone.0062867 |
Ejemplares similares
-
Optimizing Complexity Measures for fMRI Data: Algorithm, Artifact, and Sensitivity
por: Rubin, Denis, et al.
Publicado: (2013) -
The NIRS Analysis Package: Noise Reduction and Statistical Inference
por: Fekete, Tomer, et al.
Publicado: (2011) -
Using network dynamic fMRI for detection of epileptogenic foci
por: Nedic, Sanja, et al.
Publicado: (2015) -
Multiple Kernel Learning Captures a Systems-Level Functional Connectivity Biomarker Signature in Amyotrophic Lateral Sclerosis
por: Fekete, Tomer, et al.
Publicado: (2013) -
Signal Fluctuation Sensitivity: An Improved Metric for Optimizing Detection of Resting-State fMRI Networks
por: DeDora, Daniel J., et al.
Publicado: (2016)