Cargando…
Dicoogle, a Pacs Featuring Profiled Content Based Image Retrieval
Content-based image retrieval (CBIR) has been heralded as a mechanism to cope with the increasingly larger volumes of information present in medical imaging repositories. However, generic, extensible CBIR frameworks that work natively with Picture Archive and Communication Systems (PACS) are scarce....
Autores principales: | Valente, Frederico, Costa, Carlos, Silva, Augusto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646026/ https://www.ncbi.nlm.nih.gov/pubmed/23671578 http://dx.doi.org/10.1371/journal.pone.0061888 |
Ejemplares similares
-
Dicoogle Open Source: The Establishment of a New Paradigm in Medical Imaging
por: Lebre, Rui, et al.
Publicado: (2022) -
Diagnostic accuracy of content‐based dermatoscopic image retrieval with deep classification features
por: Tschandl, P., et al.
Publicado: (2018) -
Neuromorphic computing for content-based image retrieval
por: Liu, Te-Yuan, et al.
Publicado: (2022) -
Multiple Query Content-Based Image Retrieval Using Relevance Feature Weight Learning
por: Al-Mohamade, Abeer, et al.
Publicado: (2020) -
Histopathological Image Deep Feature Representation for CBIR in Smart PACS
por: Tommasino, Cristian, et al.
Publicado: (2023)