Cargando…

A GAMOS plug-in for GEANT4 based Monte Carlo simulation of radiation-induced light transport in biological media

We describe a tissue optics plug-in that interfaces with the GEANT4/GAMOS Monte Carlo (MC) architecture, providing a means of simulating radiation-induced light transport in biological media for the first time. Specifically, we focus on the simulation of light transport due to the Čerenkov effect (l...

Descripción completa

Detalles Bibliográficos
Autores principales: Glaser, Adam K., Kanick, Stephen C., Zhang, Rongxiao, Arce, Pedro, Pogue, Brian W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optical Society of America 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646601/
https://www.ncbi.nlm.nih.gov/pubmed/23667790
http://dx.doi.org/10.1364/BOE.4.000741
Descripción
Sumario:We describe a tissue optics plug-in that interfaces with the GEANT4/GAMOS Monte Carlo (MC) architecture, providing a means of simulating radiation-induced light transport in biological media for the first time. Specifically, we focus on the simulation of light transport due to the Čerenkov effect (light emission from charged particle’s traveling faster than the local speed of light in a given medium), a phenomenon which requires accurate modeling of both the high energy particle and subsequent optical photon transport, a dynamic coupled process that is not well-described by any current MC framework. The results of validation simulations show excellent agreement with currently employed biomedical optics MC codes, [i.e., Monte Carlo for Multi-Layered media (MCML), Mesh-based Monte Carlo (MMC), and diffusion theory], and examples relevant to recent studies into detection of Čerenkov light from an external radiation beam or radionuclide are presented. While the work presented within this paper focuses on radiation-induced light transport, the core features and robust flexibility of the plug-in modified package make it also extensible to more conventional biomedical optics simulations. The plug-in, user guide, example files, as well as the necessary files to reproduce the validation simulations described within this paper are available online at http://www.dartmouth.edu/optmed/research-projects/monte-carlo-software.