Cargando…

Prevalence and factors correlating with hyperoxia exposure following cardiac arrest – an observational single centre study

PURPOSE OF THE STUDY: Arterial hyperoxia during care in the intensive care unit (ICU) has been found to correlate with mortality after cardiac arrest (CA). We examined the prevalence of hyperoxia following CA including pre-ICU values and studied differences between those exposed and those not expose...

Descripción completa

Detalles Bibliográficos
Autores principales: Nelskylä, Annika, Parr, Michael J, Skrifvars, Markus B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646691/
https://www.ncbi.nlm.nih.gov/pubmed/23639102
http://dx.doi.org/10.1186/1757-7241-21-35
Descripción
Sumario:PURPOSE OF THE STUDY: Arterial hyperoxia during care in the intensive care unit (ICU) has been found to correlate with mortality after cardiac arrest (CA). We examined the prevalence of hyperoxia following CA including pre-ICU values and studied differences between those exposed and those not exposed to define predictors of exposure. MATERIALS AND METHODS: A retrospective analysis of a prospectively collected cohort of cardiac arrest patients treated in an Australian tertiary hospital between August 2008 and July 2010. Arterial blood oxygen values and used fractions of oxygen were recorded during the first 24 hours after the arrest. Hyperoxia was defined as any arterial oxygen value greater than 300 mmHg. Chi-square test was used to compare categorical data and Mann–Whitney U-test to continuous data. Statistical methods were used to identify predictors of hyperoxia exposure. RESULTS: Of 122 patients treated in the ICU following cardiac arrest 119 had one or several arterial blood gases taken and were included in the study. Of these, 49 (41.2%) were exposed to hyperoxia and 70 (58.8%) were not during the first 24 hours after the CA. Those exposed had longer delays to return of spontaneous circulation (26 minutes vs. 10 minutes) and a longer interval to ICU admission after the arrest (4 hours compared to 1 hour). Location of the arrest was an independent predictor of exposure to hyperoxia (P-value = 0,008) with out-of-hospital cardiac arrest patients being more likely to have been exposed (65%), than those with an in-hospital (21%) or ICU (30%) cardiac arrest. Out-of-hospital cardiac arrest patients had higher oxygen concentrations to the fraction of inspired oxygen ratios. CONCLUSIONS: Hyperoxia exposure was more common than previously reported and occurred more frequently in association with out-of-hospital cardiac arrest, longer times to ROSC and delays to ICU admission.