Cargando…
Processing Technology Investigation of Loquat (Eriobotrya japonica) Leaf by Ultra-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry Combined with Chemometrics
Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) and multivariate statistical analysis were used to investigate the processing technology of Loquat (Eriobotrya japonica) leaf (pipaye, PPY). The differences in samples processed using different methods...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646807/ https://www.ncbi.nlm.nih.gov/pubmed/23667702 http://dx.doi.org/10.1371/journal.pone.0064178 |
Sumario: | Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) and multivariate statistical analysis were used to investigate the processing technology of Loquat (Eriobotrya japonica) leaf (pipaye, PPY). The differences in samples processed using different methods were revealed by unsupervised principal component analysis (PCA). In the scores plot of PCA, honey-processed PPY (PPPY), crude PPY (CPPY), and heated PPY (HPPY) were clearly discriminated. Furthermore, samples processed at different temperatures could also be distinguished; indeed, our PCA results demonstrated the importance of temperature during processing. Two unique marker ions were found to discriminate between PPPY and CPPY by orthogonal partial least squares discriminant analysis (OPLS-DA), which could be used as potential chemical markers. The method was further confirmed by a verification test with commercial PPY. The orthogonal array experiment revealed an optimized processing condition with 50% honey at 140°C for 20 min after 4 h of moistening time, a process that provides significant information for standardized production. |
---|