Cargando…
A Semi-Supervised Method for Drug-Target Interaction Prediction with Consistency in Networks
Computational prediction of interactions between drugs and their target proteins is of great importance for drug discovery and design. The difficulties of developing computational methods for the prediction of such potential interactions lie in the rarity of known drug-protein interactions and no ex...
Autores principales: | Chen, Hailin, Zhang, Zuping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646965/ https://www.ncbi.nlm.nih.gov/pubmed/23667553 http://dx.doi.org/10.1371/journal.pone.0062975 |
Ejemplares similares
-
Revisiting Consistency for Semi-Supervised Semantic Segmentation †
por: Grubišić, Ivan, et al.
Publicado: (2023) -
Network-Based Inference Methods for Drug Repositioning
por: Chen, Hailin, et al.
Publicado: (2015) -
In silico drug repositioning based on integrated drug targets and canonical correlation analysis
por: Chen, Hailin, et al.
Publicado: (2022) -
Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces
por: Xia, Zheng, et al.
Publicado: (2010) -
NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning
por: Chen, Xing, et al.
Publicado: (2016)