Cargando…

Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE‐AF Consortium

BACKGROUND: Tools for the prediction of atrial fibrillation (AF) may identify high‐risk individuals more likely to benefit from preventive interventions and serve as a benchmark to test novel putative risk factors. METHODS AND RESULTS: Individual‐level data from 3 large cohorts in the United States...

Descripción completa

Detalles Bibliográficos
Autores principales: Alonso, Alvaro, Krijthe, Bouwe P., Aspelund, Thor, Stepas, Katherine A., Pencina, Michael J., Moser, Carlee B., Sinner, Moritz F., Sotoodehnia, Nona, Fontes, João D., Janssens, A. Cecile J. W., Kronmal, Richard A., Magnani, Jared W., Witteman, Jacqueline C., Chamberlain, Alanna M., Lubitz, Steven A., Schnabel, Renate B., Agarwal, Sunil K., McManus, David D., Ellinor, Patrick T., Larson, Martin G., Burke, Gregory L., Launer, Lenore J., Hofman, Albert, Levy, Daniel, Gottdiener, John S., Kääb, Stefan, Couper, David, Harris, Tamara B., Soliman, Elsayed Z., Stricker, Bruno H. C., Gudnason, Vilmundur, Heckbert, Susan R., Benjamin, Emelia J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3647274/
https://www.ncbi.nlm.nih.gov/pubmed/23537808
http://dx.doi.org/10.1161/JAHA.112.000102
_version_ 1782268707553148928
author Alonso, Alvaro
Krijthe, Bouwe P.
Aspelund, Thor
Stepas, Katherine A.
Pencina, Michael J.
Moser, Carlee B.
Sinner, Moritz F.
Sotoodehnia, Nona
Fontes, João D.
Janssens, A. Cecile J. W.
Kronmal, Richard A.
Magnani, Jared W.
Witteman, Jacqueline C.
Chamberlain, Alanna M.
Lubitz, Steven A.
Schnabel, Renate B.
Agarwal, Sunil K.
McManus, David D.
Ellinor, Patrick T.
Larson, Martin G.
Burke, Gregory L.
Launer, Lenore J.
Hofman, Albert
Levy, Daniel
Gottdiener, John S.
Kääb, Stefan
Couper, David
Harris, Tamara B.
Soliman, Elsayed Z.
Stricker, Bruno H. C.
Gudnason, Vilmundur
Heckbert, Susan R.
Benjamin, Emelia J.
author_facet Alonso, Alvaro
Krijthe, Bouwe P.
Aspelund, Thor
Stepas, Katherine A.
Pencina, Michael J.
Moser, Carlee B.
Sinner, Moritz F.
Sotoodehnia, Nona
Fontes, João D.
Janssens, A. Cecile J. W.
Kronmal, Richard A.
Magnani, Jared W.
Witteman, Jacqueline C.
Chamberlain, Alanna M.
Lubitz, Steven A.
Schnabel, Renate B.
Agarwal, Sunil K.
McManus, David D.
Ellinor, Patrick T.
Larson, Martin G.
Burke, Gregory L.
Launer, Lenore J.
Hofman, Albert
Levy, Daniel
Gottdiener, John S.
Kääb, Stefan
Couper, David
Harris, Tamara B.
Soliman, Elsayed Z.
Stricker, Bruno H. C.
Gudnason, Vilmundur
Heckbert, Susan R.
Benjamin, Emelia J.
author_sort Alonso, Alvaro
collection PubMed
description BACKGROUND: Tools for the prediction of atrial fibrillation (AF) may identify high‐risk individuals more likely to benefit from preventive interventions and serve as a benchmark to test novel putative risk factors. METHODS AND RESULTS: Individual‐level data from 3 large cohorts in the United States (Atherosclerosis Risk in Communities [ARIC] study, the Cardiovascular Health Study [CHS], and the Framingham Heart Study [FHS]), including 18 556 men and women aged 46 to 94 years (19% African Americans, 81% whites) were pooled to derive predictive models for AF using clinical variables. Validation of the derived models was performed in 7672 participants from the Age, Gene and Environment—Reykjavik study (AGES) and the Rotterdam Study (RS). The analysis included 1186 incident AF cases in the derivation cohorts and 585 in the validation cohorts. A simple 5‐year predictive model including the variables age, race, height, weight, systolic and diastolic blood pressure, current smoking, use of antihypertensive medication, diabetes, and history of myocardial infarction and heart failure had good discrimination (C‐statistic, 0.765; 95% CI, 0.748 to 0.781). Addition of variables from the electrocardiogram did not improve the overall model discrimination (C‐statistic, 0.767; 95% CI, 0.750 to 0.783; categorical net reclassification improvement, −0.0032; 95% CI, −0.0178 to 0.0113). In the validation cohorts, discrimination was acceptable (AGES C‐statistic, 0.664; 95% CI, 0.632 to 0.697 and RS C‐statistic, 0.705; 95% CI, 0.664 to 0.747) and calibration was adequate. CONCLUSION: A risk model including variables readily available in primary care settings adequately predicted AF in diverse populations from the United States and Europe.
format Online
Article
Text
id pubmed-3647274
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-36472742013-05-08 Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE‐AF Consortium Alonso, Alvaro Krijthe, Bouwe P. Aspelund, Thor Stepas, Katherine A. Pencina, Michael J. Moser, Carlee B. Sinner, Moritz F. Sotoodehnia, Nona Fontes, João D. Janssens, A. Cecile J. W. Kronmal, Richard A. Magnani, Jared W. Witteman, Jacqueline C. Chamberlain, Alanna M. Lubitz, Steven A. Schnabel, Renate B. Agarwal, Sunil K. McManus, David D. Ellinor, Patrick T. Larson, Martin G. Burke, Gregory L. Launer, Lenore J. Hofman, Albert Levy, Daniel Gottdiener, John S. Kääb, Stefan Couper, David Harris, Tamara B. Soliman, Elsayed Z. Stricker, Bruno H. C. Gudnason, Vilmundur Heckbert, Susan R. Benjamin, Emelia J. J Am Heart Assoc Original Research BACKGROUND: Tools for the prediction of atrial fibrillation (AF) may identify high‐risk individuals more likely to benefit from preventive interventions and serve as a benchmark to test novel putative risk factors. METHODS AND RESULTS: Individual‐level data from 3 large cohorts in the United States (Atherosclerosis Risk in Communities [ARIC] study, the Cardiovascular Health Study [CHS], and the Framingham Heart Study [FHS]), including 18 556 men and women aged 46 to 94 years (19% African Americans, 81% whites) were pooled to derive predictive models for AF using clinical variables. Validation of the derived models was performed in 7672 participants from the Age, Gene and Environment—Reykjavik study (AGES) and the Rotterdam Study (RS). The analysis included 1186 incident AF cases in the derivation cohorts and 585 in the validation cohorts. A simple 5‐year predictive model including the variables age, race, height, weight, systolic and diastolic blood pressure, current smoking, use of antihypertensive medication, diabetes, and history of myocardial infarction and heart failure had good discrimination (C‐statistic, 0.765; 95% CI, 0.748 to 0.781). Addition of variables from the electrocardiogram did not improve the overall model discrimination (C‐statistic, 0.767; 95% CI, 0.750 to 0.783; categorical net reclassification improvement, −0.0032; 95% CI, −0.0178 to 0.0113). In the validation cohorts, discrimination was acceptable (AGES C‐statistic, 0.664; 95% CI, 0.632 to 0.697 and RS C‐statistic, 0.705; 95% CI, 0.664 to 0.747) and calibration was adequate. CONCLUSION: A risk model including variables readily available in primary care settings adequately predicted AF in diverse populations from the United States and Europe. Blackwell Publishing Ltd 2013-04-24 /pmc/articles/PMC3647274/ /pubmed/23537808 http://dx.doi.org/10.1161/JAHA.112.000102 Text en © 2013 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley-Blackwell. http://creativecommons.org/licenses/by/2.5/ This is an Open Access article under the terms of the Creative Commons Attribution Noncommercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Original Research
Alonso, Alvaro
Krijthe, Bouwe P.
Aspelund, Thor
Stepas, Katherine A.
Pencina, Michael J.
Moser, Carlee B.
Sinner, Moritz F.
Sotoodehnia, Nona
Fontes, João D.
Janssens, A. Cecile J. W.
Kronmal, Richard A.
Magnani, Jared W.
Witteman, Jacqueline C.
Chamberlain, Alanna M.
Lubitz, Steven A.
Schnabel, Renate B.
Agarwal, Sunil K.
McManus, David D.
Ellinor, Patrick T.
Larson, Martin G.
Burke, Gregory L.
Launer, Lenore J.
Hofman, Albert
Levy, Daniel
Gottdiener, John S.
Kääb, Stefan
Couper, David
Harris, Tamara B.
Soliman, Elsayed Z.
Stricker, Bruno H. C.
Gudnason, Vilmundur
Heckbert, Susan R.
Benjamin, Emelia J.
Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE‐AF Consortium
title Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE‐AF Consortium
title_full Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE‐AF Consortium
title_fullStr Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE‐AF Consortium
title_full_unstemmed Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE‐AF Consortium
title_short Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE‐AF Consortium
title_sort simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the charge‐af consortium
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3647274/
https://www.ncbi.nlm.nih.gov/pubmed/23537808
http://dx.doi.org/10.1161/JAHA.112.000102
work_keys_str_mv AT alonsoalvaro simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT krijthebouwep simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT aspelundthor simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT stepaskatherinea simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT pencinamichaelj simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT mosercarleeb simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT sinnermoritzf simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT sotoodehnianona simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT fontesjoaod simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT janssensacecilejw simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT kronmalricharda simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT magnanijaredw simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT wittemanjacquelinec simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT chamberlainalannam simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT lubitzstevena simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT schnabelrenateb simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT agarwalsunilk simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT mcmanusdavidd simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT ellinorpatrickt simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT larsonmarting simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT burkegregoryl simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT launerlenorej simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT hofmanalbert simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT levydaniel simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT gottdienerjohns simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT kaabstefan simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT couperdavid simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT harristamarab simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT solimanelsayedz simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT strickerbrunohc simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT gudnasonvilmundur simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT heckbertsusanr simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium
AT benjaminemeliaj simpleriskmodelpredictsincidenceofatrialfibrillationinaraciallyandgeographicallydiversepopulationthechargeafconsortium