Cargando…

SMOTE for high-dimensional class-imbalanced data

BACKGROUND: Classification using class-imbalanced data is biased in favor of the majority class. The bias is even larger for high-dimensional data, where the number of variables greatly exceeds the number of samples. The problem can be attenuated by undersampling or oversampling, which produce class...

Descripción completa

Detalles Bibliográficos
Autores principales: Blagus, Rok, Lusa, Lara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648438/
https://www.ncbi.nlm.nih.gov/pubmed/23522326
http://dx.doi.org/10.1186/1471-2105-14-106