Cargando…
SMOTE for high-dimensional class-imbalanced data
BACKGROUND: Classification using class-imbalanced data is biased in favor of the majority class. The bias is even larger for high-dimensional data, where the number of variables greatly exceeds the number of samples. The problem can be attenuated by undersampling or oversampling, which produce class...
Autores principales: | Blagus, Rok, Lusa, Lara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648438/ https://www.ncbi.nlm.nih.gov/pubmed/23522326 http://dx.doi.org/10.1186/1471-2105-14-106 |
Ejemplares similares
-
Class prediction for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2010) -
Improved shrunken centroid classifiers for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013) -
Boosting for high-dimensional two-class prediction
por: Blagus, Rok, et al.
Publicado: (2015) -
Research on expansion and classification of imbalanced data based on SMOTE algorithm
por: Wang, Shujuan, et al.
Publicado: (2021) -
A self-inspected adaptive SMOTE algorithm (SASMOTE) for highly imbalanced data classification in healthcare
por: Kosolwattana, Tanapol, et al.
Publicado: (2023)