Cargando…

Detection experiments with humans implicate visual predation as a driver of colour polymorphism dynamics in pygmy grasshoppers

BACKGROUND: Animal colour patterns offer good model systems for studies of biodiversity and evolution of local adaptations. An increasingly popular approach to study the role of selection for camouflage for evolutionary trajectories of animal colour patterns is to present images of prey on paper or...

Descripción completa

Detalles Bibliográficos
Autores principales: Karpestam, Einat, Merilaita, Sami, Forsman, Anders
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648452/
https://www.ncbi.nlm.nih.gov/pubmed/23639215
http://dx.doi.org/10.1186/1472-6785-13-17
Descripción
Sumario:BACKGROUND: Animal colour patterns offer good model systems for studies of biodiversity and evolution of local adaptations. An increasingly popular approach to study the role of selection for camouflage for evolutionary trajectories of animal colour patterns is to present images of prey on paper or computer screens to human ‘predators’. Yet, few attempts have been made to confirm that rates of detection by humans can predict patterns of selection and evolutionary modifications of prey colour patterns in nature. In this study, we first analyzed encounters between human ‘predators’ and images of natural black, grey and striped colour morphs of the polymorphic Tetrix subulata pygmy grasshoppers presented on background images of unburnt, intermediate or completely burnt natural habitats. Next, we compared detection rates with estimates of capture probabilities and survival of free-ranging grasshoppers, and with estimates of relative morph frequencies in natural populations. RESULTS: The proportion of grasshoppers that were detected and time to detection depended on both the colour pattern of the prey and on the type of visual background. Grasshoppers were detected more often and faster on unburnt backgrounds than on 50% and 100% burnt backgrounds. Striped prey were detected less often than grey or black prey on unburnt backgrounds; grey prey were detected more often than black or striped prey on 50% burnt backgrounds; and black prey were detected less often than grey prey on 100% burnt backgrounds. Rates of detection mirrored previously reported rates of capture by humans of free-ranging grasshoppers, as well as morph specific survival in the wild. Rates of detection were also correlated with frequencies of striped, black and grey morphs in samples of T. subulata from natural populations that occupied the three habitat types used for the detection experiment. CONCLUSIONS: Our findings demonstrate that crypsis is background-dependent, and implicate visual predation as an important driver of evolutionary modifications of colour polymorphism in pygmy grasshoppers. Our study provides the clearest evidence to date that using humans as ‘predators’ in detection experiments may provide reliable information on the protective values of prey colour patterns and of natural selection and microevolution of camouflage in the wild.